Radiosurgery for Spetzler-Martin Grade III arteriovenous malformations: Clinical article

Dale Ding, Chun Po Yen, Robert M. Starke, Zhiyuan Xu, Xingwen Sun, Jason P. Sheehan

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


Object. Intracranial arteriovenous malformations (AVMs) are most commonly classified based on their Spetzler-Martin grades. Due to the composition of the Spetzler-Martin grading scale, Grade III AVMs are the most heterogeneous, comprising 4 distinct lesion subtypes. The management of this class of AVMs and the optimal treatment approach when intervention is indicated remain controversial. The authors report their experience with radiosurgery for the treatment of Grade III AVMs in a large cohort of patients. Methods. All patients with Spetzler-Martin Grade III AVMs treated with radiosurgery at the University of Virginia over the 20-year span from 1989 to 2009 were identified. Patients who had less than 2 years of radiological follow-up and did not have evidence of complete obliteration during that period were excluded from the study, leaving 398 cases for analysis. The median patient age at treatment was 31 years. The most common presenting symptoms were hemorrhage (59%), seizure (20%), and headache (10%). The median AVM volume was 2.8 cm3, and the median prescription dose was 20 Gy. The median radiological and clinical follow-up intervals were 54 and 68 months, respectively. Univariate and multivariate Cox proportional hazards and logistic regression analysis were used to identify factors associated with obliteration, postradiosurgery radiation-induced changes (RIC), and favorable outcome. Results. Complete AVM obliteration was observed in 69% of Grade III AVM cases at a median time of 46 months after radiosurgery. The actuarial obliteration rates at 3 and 5 years were 38% and 60%, respectively. The obliteration rate was higher in ruptured AVMs than in unruptured ones (p < 0.001). Additionally, the obliteration rate for Grade III AVMs with small size (< 3 cm diameter), deep venous drainage, and location in eloquent cortex was higher than for the other subtypes (p < 0.001). Preradiosurgery AVM rupture (p = 0.016), no preradiosurgery embolization (p = 0.003), increased prescription dose (p < 0.001), fewer isocenters (p = 0.006), and a single draining vein (p = 0.018) were independent predictors of obliteration. The annual risk of postradiosurgery hemorrhage during the latency period was 1.7%. Two patients (0.5%) died of hemorrhage during the radiosurgical latency period. The rates of symptomatic and permanent RIC were 12% and 4%, respectively. Absence of preradiosurgery AVM rupture (p < 0.001) and presence of a single draining vein (p < 0.001) were independent predictors of RIC. Favorable outcome was observed in 63% of patients. Independent predictors of favorable outcome were no preradiosurgery hemorrhage (p = 0.014), increased prescription dose (p < 0.001), fewer isocenters (p = 0.014), deep location (p = 0.014), single draining vein (p = 0.001), and lower Virginia radiosurgery AVM scale score (p = 0.016). Conclusions. Radiosurgery for Spetzler-Martin Grade III AVMs yields relatively high rates of obliteration with a low rate of adverse procedural events. Small and ruptured lesions are more likely to become obliterated after radiosurgery than large and unruptured ones.

Original languageEnglish (US)
Pages (from-to)959-969
Number of pages11
JournalJournal of neurosurgery
Issue number4
StatePublished - Apr 2014
Externally publishedYes


  • Gamma knife
  • Intracranial arteriovenous malformation
  • Spetzler-Martin Grade III
  • Stereotactic radiosurgery
  • Stroke
  • Vascular malformations

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology


Dive into the research topics of 'Radiosurgery for Spetzler-Martin Grade III arteriovenous malformations: Clinical article'. Together they form a unique fingerprint.

Cite this