Quasi-Local Mass Integrals and the Total Mass

Pengzi Miao, Luen Fai Tam, Naqing Xie

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

On asymptotically flat and asymptotically hyperbolic manifolds, by evaluating the total mass via the Ricci tensor, we show that the limits of certain Brown–York type and Hawking type quasi-local mass integrals equal the total mass of the manifold in all dimensions.

Original languageEnglish (US)
Pages (from-to)1-32
Number of pages32
JournalJournal of Geometric Analysis
DOIs
StateAccepted/In press - Jun 27 2016

Fingerprint

Ricci Tensor
Hyperbolic Manifold

Keywords

  • Quasi-local mass
  • Ricci tensor
  • Scalar curvature
  • Total mass

ASJC Scopus subject areas

  • Geometry and Topology

Cite this

Quasi-Local Mass Integrals and the Total Mass. / Miao, Pengzi; Tam, Luen Fai; Xie, Naqing.

In: Journal of Geometric Analysis, 27.06.2016, p. 1-32.

Research output: Contribution to journalArticle

Miao, Pengzi ; Tam, Luen Fai ; Xie, Naqing. / Quasi-Local Mass Integrals and the Total Mass. In: Journal of Geometric Analysis. 2016 ; pp. 1-32.
@article{71109624e271496fba60010d331c7905,
title = "Quasi-Local Mass Integrals and the Total Mass",
abstract = "On asymptotically flat and asymptotically hyperbolic manifolds, by evaluating the total mass via the Ricci tensor, we show that the limits of certain Brown–York type and Hawking type quasi-local mass integrals equal the total mass of the manifold in all dimensions.",
keywords = "Quasi-local mass, Ricci tensor, Scalar curvature, Total mass",
author = "Pengzi Miao and Tam, {Luen Fai} and Naqing Xie",
year = "2016",
month = "6",
day = "27",
doi = "10.1007/s12220-016-9721-z",
language = "English (US)",
pages = "1--32",
journal = "Journal of Geometric Analysis",
issn = "1050-6926",
publisher = "Springer New York",

}

TY - JOUR

T1 - Quasi-Local Mass Integrals and the Total Mass

AU - Miao, Pengzi

AU - Tam, Luen Fai

AU - Xie, Naqing

PY - 2016/6/27

Y1 - 2016/6/27

N2 - On asymptotically flat and asymptotically hyperbolic manifolds, by evaluating the total mass via the Ricci tensor, we show that the limits of certain Brown–York type and Hawking type quasi-local mass integrals equal the total mass of the manifold in all dimensions.

AB - On asymptotically flat and asymptotically hyperbolic manifolds, by evaluating the total mass via the Ricci tensor, we show that the limits of certain Brown–York type and Hawking type quasi-local mass integrals equal the total mass of the manifold in all dimensions.

KW - Quasi-local mass

KW - Ricci tensor

KW - Scalar curvature

KW - Total mass

UR - http://www.scopus.com/inward/record.url?scp=84976332613&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84976332613&partnerID=8YFLogxK

U2 - 10.1007/s12220-016-9721-z

DO - 10.1007/s12220-016-9721-z

M3 - Article

AN - SCOPUS:84976332613

SP - 1

EP - 32

JO - Journal of Geometric Analysis

JF - Journal of Geometric Analysis

SN - 1050-6926

ER -