Abstract
While mereotopology - the theory of boundaries, contact and separation built up on a mereological foundation - has found fruitful applications in the realm of qualitative spatial reasoning, it faces problems when its methods are extended to deal with those varieties of spatial and non-spatial reasoning which involve a factor of granularity. This is because granularity cannot easily be represented within a mereology-based framework. We sketch how this problem can be solved by means of a theory of granular partitions, a theory general enough to comprehend not only the familiar sorts of spatial partitions but also a range of coarse-grained partitions of other, non-spatial sorts. We then show how these same methods can be extended to apply to finite sequences of granular partitions evolving over time, or to what we shall call coarse- and fine-grained histories.
Original language | English (US) |
---|---|
Pages (from-to) | 153-175 |
Number of pages | 23 |
Journal | Annals of Mathematics and Artificial Intelligence |
Volume | 36 |
Issue number | 1-2 |
DOIs | |
State | Published - 2002 |
Externally published | Yes |
Keywords
- Consistent histories
- Granularity
- Interpretation of quantum mechanics
- Mereology
- Ontology
ASJC Scopus subject areas
- Artificial Intelligence
- Applied Mathematics