TY - GEN
T1 - Quantifying and understanding protein adsorption to non-fouling surfaces
AU - Agarwal, Ashutosh
AU - Katira, Parag
AU - Hess, Henry
PY - 2010/6/8
Y1 - 2010/6/8
N2 - Surfaces grafted with poly(ethylene oxide) (PEO) are known to resist protein adsorption. Research efforts in this field have focused on both developing surfaces with better resistance to protein adsorption and understanding the origin of resistance of PEO grafted surfaces to protein adsorption. In the first part of this contribution, we describe a novel quantification technique for extremely low protein coverage on surfaces. This technique utilizes measurement of the landing rate of microtubule filaments on kinesin proteins adsorbed on a surface to determine the kinesin density. The detection limit of our technique is 100 times lower than that of standard characterization methods and is employed to test the performance of novel and established coatings with outstanding resistance to protein adsorption. In the second part, a random sequential adsorption (RSA) model is presented for protein adsorption to PEO coated surfaces. The model suggests that PEO chains act as almost perfect steric barriers to protein adsorption. Furthermore, it can be used to predict the performance of a variety of systems towards resisting protein adsorption and can help in the design of better nonfouling surface coatings.
AB - Surfaces grafted with poly(ethylene oxide) (PEO) are known to resist protein adsorption. Research efforts in this field have focused on both developing surfaces with better resistance to protein adsorption and understanding the origin of resistance of PEO grafted surfaces to protein adsorption. In the first part of this contribution, we describe a novel quantification technique for extremely low protein coverage on surfaces. This technique utilizes measurement of the landing rate of microtubule filaments on kinesin proteins adsorbed on a surface to determine the kinesin density. The detection limit of our technique is 100 times lower than that of standard characterization methods and is employed to test the performance of novel and established coatings with outstanding resistance to protein adsorption. In the second part, a random sequential adsorption (RSA) model is presented for protein adsorption to PEO coated surfaces. The model suggests that PEO chains act as almost perfect steric barriers to protein adsorption. Furthermore, it can be used to predict the performance of a variety of systems towards resisting protein adsorption and can help in the design of better nonfouling surface coatings.
UR - http://www.scopus.com/inward/record.url?scp=77953038995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953038995&partnerID=8YFLogxK
U2 - 10.1109/NEBC.2010.5458217
DO - 10.1109/NEBC.2010.5458217
M3 - Conference contribution
AN - SCOPUS:77953038995
SN - 9781424468799
T3 - Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010
BT - Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010
T2 - 36th Annual Northeast Bioengineering Conference, NEBEC 2010
Y2 - 26 March 2010 through 28 March 2010
ER -