Prostate Cancer Targeted X-Ray Fluorescence Imaging via Gold Nanoparticles Functionalized With Prostate-Specific Membrane Antigen (PSMA)

Daiki Hara, Wensi Tao, Tulasigeri M. Totiger, Ali Pourmand, Nesrin Dogan, John Chetley Ford, Junwei Shi, Alan Pollack

Research output: Contribution to journalArticlepeer-review


Purpose: The gold nanoparticle (GNP) as a promising theranostic probe has been increasingly studied. The tumor-targeting efficiency of GNPs is crucial to increase the therapeutic ratio. In this study, we developed PSMA-targeted GNPs to enhance GNP uptake in prostate cancer and developed an x-ray fluorescence imaging system to noninvasively monitor and assess GNP delivery. Methods and Materials: For targeted therapy of prostate cancer, anti–prostate-specific membrane antigen (PSMA) antibodies were conjugated onto PEGylated GNPs through 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) (EDC/NHS) chemistry. In vivo imaging was implemented using an in-house–developed dual-modality computed tomography (CT) and x-ray fluorescence CT (XFCT) system on mice bearing subcutaneous LNCaP prostate tumors. After intravenous administration of GNPs (15 mg/mL, 200 μL), the x-ray fluorescence signals from the tumor were collected at various time points (5 minutes to approximately 30 hours) for GNP pharmacokinetics analysis. At 24 hours after administration, x-ray fluorescence projection (XRFproj) and XFCT imaging were conducted to evaluate the prostate tumor uptake of active- and passive-targeting GNPs. Inductively coupled plasma mass spectrometry analysis was adopted as a benchmark to verify the quantification accuracy of XRFproj/XFCT imaging. Results: Fluorescence microscopic imaging confirmed the enhanced (approximately 4 times) targeting efficiency of PSMA-targeted GNPs in vitro. The pharmacokinetics analysis showed enhanced tumor uptake/retention of PSMA-targeted GNPs and revealed that the peak tumor accumulation appeared at approximately 24 hours after intravenous administration. Both XRFproj and XFCT imaging presented their accuracy in quantifying GNPs within tumors noninvasively. Moreover, XFCT imaging verified its unique capabilities to simultaneously determine the heterogeneous spatial distribution and the concentration of GNPs within tumors in vivo. Conclusions: In conjunction with PSMA-targeted GNPs, XRFproj/XFCT would be a highly sensitive tool for targeted imaging of prostate cancer, benefiting the elucidation of mechanisms of GNP-assisted prostate-cancer therapy.

Original languageEnglish (US)
Pages (from-to)220-232
Number of pages13
JournalInternational Journal of Radiation Oncology Biology Physics
Issue number1
StatePublished - Sep 1 2021

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research


Dive into the research topics of 'Prostate Cancer Targeted X-Ray Fluorescence Imaging via Gold Nanoparticles Functionalized With Prostate-Specific Membrane Antigen (PSMA)'. Together they form a unique fingerprint.

Cite this