Principal eigenvalues for problems with indefinite weight function on rn

K. J. Brown, George Cosner, J. Fleckinger

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

We investigate the existence of positive principal eigenvalues of the problem − Δu(x) = λg(x)u for x ϵ Rn; u(x) → 0 as x → ∞ where the weight function g changes sign on Rn. It is proved that such eigenvalues exist if g is negative and bounded away from 0 at ∞ or if n ≥ 3 and |g(x)| is sufficiently small at ∞ but do not exist if n = 1 or 2.

Original languageEnglish (US)
Pages (from-to)147-155
Number of pages9
JournalProceedings of the American Mathematical Society
Volume109
Issue number1
DOIs
StatePublished - 1990

Fingerprint

Indefinite Weight
Principal Eigenvalue
Sign Change
Weight Function
Eigenvalue

Keywords

  • Elliptic boundary value problems
  • Indefinite weight function
  • Spectral theory

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Principal eigenvalues for problems with indefinite weight function on rn . / Brown, K. J.; Cosner, George; Fleckinger, J.

In: Proceedings of the American Mathematical Society, Vol. 109, No. 1, 1990, p. 147-155.

Research output: Contribution to journalArticle

@article{752adb8d0cb7468aa7e414df90abd259,
title = "Principal eigenvalues for problems with indefinite weight function on rn",
abstract = "We investigate the existence of positive principal eigenvalues of the problem − Δu(x) = λg(x)u for x ϵ Rn; u(x) → 0 as x → ∞ where the weight function g changes sign on Rn. It is proved that such eigenvalues exist if g is negative and bounded away from 0 at ∞ or if n ≥ 3 and |g(x)| is sufficiently small at ∞ but do not exist if n = 1 or 2.",
keywords = "Elliptic boundary value problems, Indefinite weight function, Spectral theory",
author = "Brown, {K. J.} and George Cosner and J. Fleckinger",
year = "1990",
doi = "10.1090/S0002-9939-1990-1007489-1",
language = "English (US)",
volume = "109",
pages = "147--155",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "1",

}

TY - JOUR

T1 - Principal eigenvalues for problems with indefinite weight function on rn

AU - Brown, K. J.

AU - Cosner, George

AU - Fleckinger, J.

PY - 1990

Y1 - 1990

N2 - We investigate the existence of positive principal eigenvalues of the problem − Δu(x) = λg(x)u for x ϵ Rn; u(x) → 0 as x → ∞ where the weight function g changes sign on Rn. It is proved that such eigenvalues exist if g is negative and bounded away from 0 at ∞ or if n ≥ 3 and |g(x)| is sufficiently small at ∞ but do not exist if n = 1 or 2.

AB - We investigate the existence of positive principal eigenvalues of the problem − Δu(x) = λg(x)u for x ϵ Rn; u(x) → 0 as x → ∞ where the weight function g changes sign on Rn. It is proved that such eigenvalues exist if g is negative and bounded away from 0 at ∞ or if n ≥ 3 and |g(x)| is sufficiently small at ∞ but do not exist if n = 1 or 2.

KW - Elliptic boundary value problems

KW - Indefinite weight function

KW - Spectral theory

UR - http://www.scopus.com/inward/record.url?scp=84966229474&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966229474&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-1990-1007489-1

DO - 10.1090/S0002-9939-1990-1007489-1

M3 - Article

VL - 109

SP - 147

EP - 155

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 1

ER -