Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction

Natalia Sharova, Yuanfei Wu, Xiaonan Zhu, Ruzena Stranska, Rajnish Kaushik, Mark Sharkey, Mario Stevenson

Research output: Contribution to journalArticlepeer-review

156 Scopus citations


Primate lentiviruses encode four "accessory proteins" including Vif, Vpu, Nef, and Vpr/Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. We present evidence that the Vpx proteins of HIV-2/SIVSM promote virus infection by antagonizing an antiviral restriction in macrophages. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in trans overcame the restriction to HIV-1 and SIV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. Our results indicate that macrophage harbor a potent antiviral restriction and that primate lentiviruses have evolved Vpx to counteract this restriction.

Original languageEnglish (US)
Article numbere1000057
JournalPLoS pathogens
Issue number5
StatePublished - May 2008
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology


Dive into the research topics of 'Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction'. Together they form a unique fingerprint.

Cite this