Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading

Xin Gao, Qiaoqiao Zhu, Weiyong Gu

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2 MPa) and diurnal loads (0.1/0.3 MPa and 0.15/0.25 MPa in 12/12 hours shift with an average of 0.2 MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue.

Original languageEnglish (US)
Pages (from-to)2655-2661
Number of pages7
JournalJournal of Biomechanics
Issue number13
StatePublished - Sep 6 2016


  • Finite element analysis
  • Glycosaminoglycan synthesis
  • Intervertebral disc
  • Mechanical stimuli
  • Mechanobiology
  • Multiscale mathematical model

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation


Dive into the research topics of 'Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading'. Together they form a unique fingerprint.

Cite this