Predicting early recovery of consciousness after cardiac arrest supported by quantitative electroencephalography

Andrew Bauerschmidt, Andrey Eliseyev, Kevin W. Doyle, Angela Velasquez, Jennifer Egbebike, Wendy Chiu, Vedika Kumar, Ayham Alkhachroum, Caroline Der Nigoghossian, Fawaz Al-Mufti, Le Roy Rabbani, Daniel Brodie, Clio Rubinos, Soojin Park, David Roh, Sachin Agarwal, Jan Claassen

Research output: Contribution to journalArticlepeer-review

Abstract

Objective: To determine the ability of quantitative electroencephalography (QEEG) to improve the accuracy of predicting recovery of consciousness by post-cardiac arrest day 10. Methods: Unconscious survivors of cardiac arrest undergoing daily clinical and EEG assessments through post-cardiac arrest day 10 were studied in a prospective observational cohort study. Power spectral density, local coherence, and permutation entropy were calculated from daily EEG clips following a painful stimulus. Recovery of consciousness was defined as following at least simple commands by day 10. We determined the impact of EEG metrics to predict recovery when analyzed with established predictors of recovery using partial least squares regression models. Explained variance analysis identified which features contributed most to the predictive model. Results: 367 EEG epochs from 98 subjects were analyzed in conjunction with clinical measures. Highest prediction accuracy was achieved when adding QEEG features from post-arrest days 4–6 to established predictors (area under the receiver operating curve improved from 0.81 ± 0.04 to 0.86 ± 0.05). Prediction accuracy decreased from 0.84 ± 0.04 to 0.79 ± 0.04 when adding QEEG features from post-arrest days 1–3. Patients with recovery of command-following by day 10 showed higher coherence across the frequency spectrum and higher centro-occipital delta-frequency spectral power by days 4–6, and globally-higher theta range permutation entropy by days 7–10. Conclusions: Adding quantitative EEG metrics to established predictors of recovery allows modest improvement of prediction accuracy for recovery of consciousness, when obtained within a week of cardiac arrest. Further research is needed to determine the best strategy for integration of QEEG data into prognostic models in this patient population.

Original languageEnglish (US)
Pages (from-to)130-137
Number of pages8
JournalResuscitation
Volume165
DOIs
StatePublished - Aug 2021
Externally publishedYes

Keywords

  • Circulatory arrest
  • Coma
  • Consciousness
  • Death
  • EEG
  • Electrocerebral

ASJC Scopus subject areas

  • Emergency Medicine
  • Emergency
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Predicting early recovery of consciousness after cardiac arrest supported by quantitative electroencephalography'. Together they form a unique fingerprint.

Cite this