Predictability aspects of global aqua-planet simulations with explicit convection

Brian E Mapes, Stefan Tulich, Tomoe Nasuno, Masaki Satoh

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively- coupled waves so that explicit convection is an especially topical novelty. Squared differences between pairs of runs grow from initially tiny values to saturation at twice the climatological variance. For wavelengths shorter than 103 km, differences saturate within about a day. For tropical long waves, the time to saturation indicates predictability for at least 2 weeks. This time scale is similar in middle latitude flow, which interacts with tropical waves in the 3D model, but it is also similar in 2D pseudo-equatorial vertical plane simulations of pure convectively coupled gravity waves. As a result, no simple conclusions can be drawn about whether tropical predictability is limited more by tropical chaos or by tropical-extratropical interactions. Difference growth appears to fill out the saturation energy spectrum in a “vertical” (up-magnitude) rather than “horizontal” (up-scale) manner. Up-scale growth thus occurs as a continuing amplification of large scales after small scales saturate, which begs the question of what sets the shape of the saturation (climatological) power spectra. Wind spectra are nearly power-law with a logarithmic slope of about −5/3 in the free troposphere, remarkably so in the 2D runs and clearly distinct from slope −2 (a null hypothesis of spectrally white wind divergence). A common interpretation of −5/3 slope − as indicative of a cascade, a steady conservative transfer of energy from source to sink scales by interactions that are local in log-wavelength space − is hard to apply to these moist tropical waves.

Original languageEnglish (US)
Pages (from-to)175-185
Number of pages11
JournalJournal of the Meteorological Society of Japan
Volume86A
StatePublished - 2008

Fingerprint

planet
convection
saturation
simulation
wavelength
chaotic dynamics
gravity wave
energy
troposphere
amplification
power law
divergence
timescale
weather

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Predictability aspects of global aqua-planet simulations with explicit convection. / Mapes, Brian E; Tulich, Stefan; Nasuno, Tomoe; Satoh, Masaki.

In: Journal of the Meteorological Society of Japan, Vol. 86A, 2008, p. 175-185.

Research output: Contribution to journalArticle

@article{905076582c104fafaae6613934a38488,
title = "Predictability aspects of global aqua-planet simulations with explicit convection",
abstract = "High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively- coupled waves so that explicit convection is an especially topical novelty. Squared differences between pairs of runs grow from initially tiny values to saturation at twice the climatological variance. For wavelengths shorter than 103 km, differences saturate within about a day. For tropical long waves, the time to saturation indicates predictability for at least 2 weeks. This time scale is similar in middle latitude flow, which interacts with tropical waves in the 3D model, but it is also similar in 2D pseudo-equatorial vertical plane simulations of pure convectively coupled gravity waves. As a result, no simple conclusions can be drawn about whether tropical predictability is limited more by tropical chaos or by tropical-extratropical interactions. Difference growth appears to fill out the saturation energy spectrum in a “vertical” (up-magnitude) rather than “horizontal” (up-scale) manner. Up-scale growth thus occurs as a continuing amplification of large scales after small scales saturate, which begs the question of what sets the shape of the saturation (climatological) power spectra. Wind spectra are nearly power-law with a logarithmic slope of about −5/3 in the free troposphere, remarkably so in the 2D runs and clearly distinct from slope −2 (a null hypothesis of spectrally white wind divergence). A common interpretation of −5/3 slope − as indicative of a cascade, a steady conservative transfer of energy from source to sink scales by interactions that are local in log-wavelength space − is hard to apply to these moist tropical waves.",
author = "Mapes, {Brian E} and Stefan Tulich and Tomoe Nasuno and Masaki Satoh",
year = "2008",
language = "English (US)",
volume = "86A",
pages = "175--185",
journal = "Journal of the Meteorological Society of Japan",
issn = "0026-1165",
publisher = "Meteorological Society of Japan",

}

TY - JOUR

T1 - Predictability aspects of global aqua-planet simulations with explicit convection

AU - Mapes, Brian E

AU - Tulich, Stefan

AU - Nasuno, Tomoe

AU - Satoh, Masaki

PY - 2008

Y1 - 2008

N2 - High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively- coupled waves so that explicit convection is an especially topical novelty. Squared differences between pairs of runs grow from initially tiny values to saturation at twice the climatological variance. For wavelengths shorter than 103 km, differences saturate within about a day. For tropical long waves, the time to saturation indicates predictability for at least 2 weeks. This time scale is similar in middle latitude flow, which interacts with tropical waves in the 3D model, but it is also similar in 2D pseudo-equatorial vertical plane simulations of pure convectively coupled gravity waves. As a result, no simple conclusions can be drawn about whether tropical predictability is limited more by tropical chaos or by tropical-extratropical interactions. Difference growth appears to fill out the saturation energy spectrum in a “vertical” (up-magnitude) rather than “horizontal” (up-scale) manner. Up-scale growth thus occurs as a continuing amplification of large scales after small scales saturate, which begs the question of what sets the shape of the saturation (climatological) power spectra. Wind spectra are nearly power-law with a logarithmic slope of about −5/3 in the free troposphere, remarkably so in the 2D runs and clearly distinct from slope −2 (a null hypothesis of spectrally white wind divergence). A common interpretation of −5/3 slope − as indicative of a cascade, a steady conservative transfer of energy from source to sink scales by interactions that are local in log-wavelength space − is hard to apply to these moist tropical waves.

AB - High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively- coupled waves so that explicit convection is an especially topical novelty. Squared differences between pairs of runs grow from initially tiny values to saturation at twice the climatological variance. For wavelengths shorter than 103 km, differences saturate within about a day. For tropical long waves, the time to saturation indicates predictability for at least 2 weeks. This time scale is similar in middle latitude flow, which interacts with tropical waves in the 3D model, but it is also similar in 2D pseudo-equatorial vertical plane simulations of pure convectively coupled gravity waves. As a result, no simple conclusions can be drawn about whether tropical predictability is limited more by tropical chaos or by tropical-extratropical interactions. Difference growth appears to fill out the saturation energy spectrum in a “vertical” (up-magnitude) rather than “horizontal” (up-scale) manner. Up-scale growth thus occurs as a continuing amplification of large scales after small scales saturate, which begs the question of what sets the shape of the saturation (climatological) power spectra. Wind spectra are nearly power-law with a logarithmic slope of about −5/3 in the free troposphere, remarkably so in the 2D runs and clearly distinct from slope −2 (a null hypothesis of spectrally white wind divergence). A common interpretation of −5/3 slope − as indicative of a cascade, a steady conservative transfer of energy from source to sink scales by interactions that are local in log-wavelength space − is hard to apply to these moist tropical waves.

UR - http://www.scopus.com/inward/record.url?scp=84971441823&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971441823&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84971441823

VL - 86A

SP - 175

EP - 185

JO - Journal of the Meteorological Society of Japan

JF - Journal of the Meteorological Society of Japan

SN - 0026-1165

ER -