Portable, non-invasive video imaging of retinal blood flow dynamics

Kyoung A. Cho, Abhishek Rege, Yici Jing, Akash Chaurasia, Amit Guruprasad, Edmund Arthur, Delia Cabrera DeBuc

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Retinal blood flow (RBF) information has the potential to offer insight into ophthalmic health and disease that is complementary to traditional anatomical biomarkers as well as to retinal perfusion information provided by fluorescence or optical coherence tomography angiography (OCT-A). The present study was performed to test the functional attributes and performance of the XyCAM RI, a non-invasive imager that obtains and assesses RBF information. The XyCAM RI was installed and used in two different settings to obtain video recordings of the blood flow in the optic nerve head region in eyes of healthy subjects. The mean blood flow velocity index (BFVi) in the optic disc and in each of multiple arterial and venous segments was obtained and shown to reveal a temporal waveform with a peak and trough that correlates with a cardiac cycle as revealed by a reference pulse oximeter (correlation between respective peak-to-peak distances was 0.977). The intra-session repeatability of the XyCAM RI was high with a coefficient of variation (CV) of 1.84 ± 1.13% across both sites. Artery-vein comparisons were made by estimating, in a pair of adjacent arterial and venous segments, various temporal waveform metrics such as pulsatility index, percent time in systole and diastole, and change in vascular blood volume over a cardiac cycle. All arterial metrics were shown to have significant differences with venous metrics (p < 0.001). The XyCAM RI, therefore, by obtaining repeatable blood flow measurements with high temporal resolution, permits the differential assessment of arterial and venous blood flow patterns in the retina that may facilitate research into disease pathophysiology and biomarker development for diagnostics.

Original languageEnglish (US)
Article number20236
JournalScientific reports
Issue number1
StatePublished - Dec 2020

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Portable, non-invasive video imaging of retinal blood flow dynamics'. Together they form a unique fingerprint.

Cite this