Plane-strain instability of saturated porous media

J. P. Bardet, A. Shiv

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

Herein we investigate the plane-strain instability of rectangular blocks that are made of porous materials saturated with a fluid. We model the material behavior with rate-type constitutive equations, and study instability generated by the interaction of nearly incompressible solid and fluid constituents. Our investigation, although it applies to a broad range of materials, is limited to hypoelastic and elastoplastic models. Elastoplastic models are found to undergo two-phase instability even though the solid phase remains stable. Two-phase instability is more likely to occur in contractant hardening materials than in dilatant materials. Its emergence is triggered by the solid-fluid interaction, and is delayed by the grain-fluid compressibility. Twophase instability also takes place in dilatant materials, but is less catastrophic than in contractant materials. The present analysis is useful for distinguishing the physical from the artifical origins of instabilities, which is an important issue in the numerical solutions of soil-liquefaction problems.

Original languageEnglish (US)
Pages (from-to)717-724
Number of pages8
JournalJournal of Engineering Mechanics
Volume121
Issue number6
DOIs
StatePublished - Jun 1995
Externally publishedYes

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Plane-strain instability of saturated porous media'. Together they form a unique fingerprint.

  • Cite this