Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway

Deepu Nair, Ravi P. Misra, John D. Sallis, Herman S Cheung

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Calcium deposition diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are a significant source of morbidity in the elderly. We have shown previously that both types of crystals can induce mitogenesis, as well as metalloproteinase synthesis and secretion by fibroblasts and chondrocytes. These responses may promote degradation of articular tissues. We have also shown previously that both CPPD and BCP crystals activate expression of the c-fos and c-jun proto- oncogenes. Phosphocitrate (PC) can specifically block mitogenesis and proto- oncogene expression induced by either BCP or CPPD crystals in 3T3 cells and human fibroblasts, suggesting that PC may be an effective therapy for calcium deposition diseases. To understand how PC inhibits BCP and CPPD-mediated cellular effects, we have investigated the mechanism by which BCP and CPPD transduce signals to the nucleus. Here we demonstrate that BCP and CPPD crystals activate a protein kinase signal transduction pathway involving p42 and p44 mitogen-activated protein (MAP) kinases (ERK 2 and ERK 1). BCP and CPPD also cause phosphorylation of a nuclear transcription factor, cyclic AMP response element-binding protein (CREB), on serine 133, a residue essential for CREB's ability to transactivate. Treatment of cells with PC at concentrations of 10-3 to 10-5 M blocked both the activation of p42/p44 MAP kinases, and CREB serine 133 phosphorylation, in a dose-dependent fashion. At 10-3 M, a PC analogue, n-sulfo-2-aminotricarballylate and titrate also modulate this signal transduction pathway. Inhibition by PC is specific for BCP- and CPPD-mediated signaling, since all three compounds had no effect on serum-induced p42/P44 or interleukin-1β induced p38 MAP kinase activities. Treatment of cells with an inhibitor of MEK1, an upstream activator of MAPKs, significantly inhibited crystal-induced cell proliferation, suggesting that the MAPK pathway is a significant mediator of crystal-induced signals.

Original languageEnglish
Pages (from-to)18920-18925
Number of pages6
JournalJournal of Biological Chemistry
Volume272
Issue number30
DOIs
StatePublished - Aug 12 1997

Fingerprint

Calcium Pyrophosphate
Signal transduction
Mitogen-Activated Protein Kinases
Signal Transduction
Crystals
Mitogen-Activated Protein Kinase 1
Cyclic AMP Response Element-Binding Protein
Phosphorylation
Serine
Fibroblasts
jun Genes
Chondrocalcinosis
Calcium
Cells
3T3 Cells
Proto-Oncogenes
Metalloproteases
p38 Mitogen-Activated Protein Kinases
Chondrocytes
phosphocitrate

ASJC Scopus subject areas

  • Biochemistry

Cite this

Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. / Nair, Deepu; Misra, Ravi P.; Sallis, John D.; Cheung, Herman S.

In: Journal of Biological Chemistry, Vol. 272, No. 30, 12.08.1997, p. 18920-18925.

Research output: Contribution to journalArticle

@article{e0b1dcc4d6a6424d8091c7d97ace9771,
title = "Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway",
abstract = "Calcium deposition diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are a significant source of morbidity in the elderly. We have shown previously that both types of crystals can induce mitogenesis, as well as metalloproteinase synthesis and secretion by fibroblasts and chondrocytes. These responses may promote degradation of articular tissues. We have also shown previously that both CPPD and BCP crystals activate expression of the c-fos and c-jun proto- oncogenes. Phosphocitrate (PC) can specifically block mitogenesis and proto- oncogene expression induced by either BCP or CPPD crystals in 3T3 cells and human fibroblasts, suggesting that PC may be an effective therapy for calcium deposition diseases. To understand how PC inhibits BCP and CPPD-mediated cellular effects, we have investigated the mechanism by which BCP and CPPD transduce signals to the nucleus. Here we demonstrate that BCP and CPPD crystals activate a protein kinase signal transduction pathway involving p42 and p44 mitogen-activated protein (MAP) kinases (ERK 2 and ERK 1). BCP and CPPD also cause phosphorylation of a nuclear transcription factor, cyclic AMP response element-binding protein (CREB), on serine 133, a residue essential for CREB's ability to transactivate. Treatment of cells with PC at concentrations of 10-3 to 10-5 M blocked both the activation of p42/p44 MAP kinases, and CREB serine 133 phosphorylation, in a dose-dependent fashion. At 10-3 M, a PC analogue, n-sulfo-2-aminotricarballylate and titrate also modulate this signal transduction pathway. Inhibition by PC is specific for BCP- and CPPD-mediated signaling, since all three compounds had no effect on serum-induced p42/P44 or interleukin-1β induced p38 MAP kinase activities. Treatment of cells with an inhibitor of MEK1, an upstream activator of MAPKs, significantly inhibited crystal-induced cell proliferation, suggesting that the MAPK pathway is a significant mediator of crystal-induced signals.",
author = "Deepu Nair and Misra, {Ravi P.} and Sallis, {John D.} and Cheung, {Herman S}",
year = "1997",
month = "8",
day = "12",
doi = "10.1074/jbc.272.30.18920",
language = "English",
volume = "272",
pages = "18920--18925",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "30",

}

TY - JOUR

T1 - Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway

AU - Nair, Deepu

AU - Misra, Ravi P.

AU - Sallis, John D.

AU - Cheung, Herman S

PY - 1997/8/12

Y1 - 1997/8/12

N2 - Calcium deposition diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are a significant source of morbidity in the elderly. We have shown previously that both types of crystals can induce mitogenesis, as well as metalloproteinase synthesis and secretion by fibroblasts and chondrocytes. These responses may promote degradation of articular tissues. We have also shown previously that both CPPD and BCP crystals activate expression of the c-fos and c-jun proto- oncogenes. Phosphocitrate (PC) can specifically block mitogenesis and proto- oncogene expression induced by either BCP or CPPD crystals in 3T3 cells and human fibroblasts, suggesting that PC may be an effective therapy for calcium deposition diseases. To understand how PC inhibits BCP and CPPD-mediated cellular effects, we have investigated the mechanism by which BCP and CPPD transduce signals to the nucleus. Here we demonstrate that BCP and CPPD crystals activate a protein kinase signal transduction pathway involving p42 and p44 mitogen-activated protein (MAP) kinases (ERK 2 and ERK 1). BCP and CPPD also cause phosphorylation of a nuclear transcription factor, cyclic AMP response element-binding protein (CREB), on serine 133, a residue essential for CREB's ability to transactivate. Treatment of cells with PC at concentrations of 10-3 to 10-5 M blocked both the activation of p42/p44 MAP kinases, and CREB serine 133 phosphorylation, in a dose-dependent fashion. At 10-3 M, a PC analogue, n-sulfo-2-aminotricarballylate and titrate also modulate this signal transduction pathway. Inhibition by PC is specific for BCP- and CPPD-mediated signaling, since all three compounds had no effect on serum-induced p42/P44 or interleukin-1β induced p38 MAP kinase activities. Treatment of cells with an inhibitor of MEK1, an upstream activator of MAPKs, significantly inhibited crystal-induced cell proliferation, suggesting that the MAPK pathway is a significant mediator of crystal-induced signals.

AB - Calcium deposition diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are a significant source of morbidity in the elderly. We have shown previously that both types of crystals can induce mitogenesis, as well as metalloproteinase synthesis and secretion by fibroblasts and chondrocytes. These responses may promote degradation of articular tissues. We have also shown previously that both CPPD and BCP crystals activate expression of the c-fos and c-jun proto- oncogenes. Phosphocitrate (PC) can specifically block mitogenesis and proto- oncogene expression induced by either BCP or CPPD crystals in 3T3 cells and human fibroblasts, suggesting that PC may be an effective therapy for calcium deposition diseases. To understand how PC inhibits BCP and CPPD-mediated cellular effects, we have investigated the mechanism by which BCP and CPPD transduce signals to the nucleus. Here we demonstrate that BCP and CPPD crystals activate a protein kinase signal transduction pathway involving p42 and p44 mitogen-activated protein (MAP) kinases (ERK 2 and ERK 1). BCP and CPPD also cause phosphorylation of a nuclear transcription factor, cyclic AMP response element-binding protein (CREB), on serine 133, a residue essential for CREB's ability to transactivate. Treatment of cells with PC at concentrations of 10-3 to 10-5 M blocked both the activation of p42/p44 MAP kinases, and CREB serine 133 phosphorylation, in a dose-dependent fashion. At 10-3 M, a PC analogue, n-sulfo-2-aminotricarballylate and titrate also modulate this signal transduction pathway. Inhibition by PC is specific for BCP- and CPPD-mediated signaling, since all three compounds had no effect on serum-induced p42/P44 or interleukin-1β induced p38 MAP kinase activities. Treatment of cells with an inhibitor of MEK1, an upstream activator of MAPKs, significantly inhibited crystal-induced cell proliferation, suggesting that the MAPK pathway is a significant mediator of crystal-induced signals.

UR - http://www.scopus.com/inward/record.url?scp=0030744595&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030744595&partnerID=8YFLogxK

U2 - 10.1074/jbc.272.30.18920

DO - 10.1074/jbc.272.30.18920

M3 - Article

C2 - 9228071

AN - SCOPUS:0030744595

VL - 272

SP - 18920

EP - 18925

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 30

ER -