Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: Potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation

Sarah Crunkhorn, Farrell Dearie, Christos Mantzoros, Hiral Gami, Wagner S. Da Silva, Daniel Espinoza, Ryan Faucette, Kristen Barry, Antonio C. Bianco, Mary Elizabeth Patti

Research output: Contribution to journalArticle

188 Scopus citations

Abstract

Peroxisome proliferator activator receptor-γ coactivator 1 (PGC-1) is a major candidate gene for diabetes-related metabolic phenotypes, contributing to decreased expression of nuclear-encoded mitochondrial genes in muscle and adipose tissue. We have demonstrated that muscle expression of PGC-1α and -β is reduced in both genetic (Lepob/Lepob) and acquired obesity (high fat diet). In C57BL6 mice, muscle PGC-1α expression decreased by 43% (p < 0.02) after 1 week of a high fat diet and persisted more than 11 weeks. In contrast, PGC-1α reductions were not sustained in obesity-resistant A/J mice. To identify mediators of obesity-linked reductions in PGC-1, we tested the effects of cellular nutrients in C2C12 myotubes. Although overnight exposure to high insulin, glucose, glucosamine, or amino acids had no effect, saturated fatty acids potently reduced PGC-1α and -β mRNA expression. Palmitate decreased PGC-1α and -β expression by 38% (p = 0.01) and 53% (p = 0.006); stearate similarly decreased expression of PGC-1α and -β by 22% (p = 0.02) and 39% (p = 0.02). These effects were mediated at a transcriptional level, as indicated by an 11-fold reduction of PGC-1α promoter activity by palmitate and reversal of effects by histone deacetylase inhibition. Palmitate also (a) reduced expression of tricarboxylic acid cycle and oxidative phosphorylation mitochondrial genes and (b) reduced oxygen consumption. These effects were reversed by overexpression of PGC-1α or -β, indicating PGC-1 dependence. Palmitate effects also required p38 MAPK, as demonstrated by 1) palmitate-induced increase in p38 MAPK phosphorylation, 2) reversal of palmitate effects on PGC-1 and mitochondrial gene expression by p38 MAPK inhibitors, and 3) reversal of palmitate effects by small interfering RNA-mediated decreases in p38α MAPK. These data indicate that obesity and saturated fatty acids decrease PGC-1 and mitochondrial gene expression and function via p38 MAPK-dependent transcriptional pathways.

Original languageEnglish (US)
Pages (from-to)15439-15450
Number of pages12
JournalJournal of Biological Chemistry
Volume282
Issue number21
DOIs
StatePublished - May 25 2007

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: Potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation'. Together they form a unique fingerprint.

  • Cite this