Patterns and statistics of in-water polarization under conditions of linear and nonlinear ocean surface waves

Zao Xu, Dick K P Yue, Lian Shen, Kenneth Voss

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We study the polarization properties of the light field under a dynamic ocean surface using realistic linear and nonlinear ocean surface waves. The three-dimensional polarized radiative transfer of the dynamic ocean-atmosphere system is considered using a Monte Carlo vector radiative transfer simulation for arbitrary depth. The program is validated with measurement data taken in Hawaii during the Radiance in a Dynamic Ocean project. The main focus of this study is the influence of the wind-driven ocean waves on the polarization patterns and statistics at different optical depths under various conditions of light wavelength and solar incidence. Of special interest is the effect of the nonlinearity of the surface waves on the polarization statistics. To facilitate the study, phase-resolved direct simulations of the linear and nonlinear surface wavefields are performed using a high-order spectral method. The results show that the time-averaged degree of polarization within the Snell's window is dependent on the mean square slope of the ocean surface. Higher mean square slope, or wind speed, leads to a smaller degree of polarization. At the same time, the variability of the degree of polarization has a strong dependence on the surface roughness. A rougher ocean surface induces higher variability of the degree of polarization. The effect of wave nonlinearity can be neglected for the mean value of polarization, but is manifested in the variability of the degree of polarization, with a general increase in the variance with increasing wave nonlinearity. The present findings provide possible mechanisms for characterizing the dynamic ocean surface based on underwater polarized light measurements.

Original languageEnglish (US)
Article numberC00H12
JournalJournal of Geophysical Research C: Oceans
Volume116
Issue number12
DOIs
StatePublished - 2011

Fingerprint

ocean surface
ocean wave
Water waves
Surface waves
surface wave
surface waves
sea surface
polarization
Statistics
statistics
Polarization
Water
water
ocean dynamics
nonlinearity
Radiative transfer
radiative transfer
Light measurement
slopes
atmosphere-ocean system

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Oceanography

Cite this

Patterns and statistics of in-water polarization under conditions of linear and nonlinear ocean surface waves. / Xu, Zao; Yue, Dick K P; Shen, Lian; Voss, Kenneth.

In: Journal of Geophysical Research C: Oceans, Vol. 116, No. 12, C00H12, 2011.

Research output: Contribution to journalArticle

@article{b418e15336ca4ee1be7dcd6e6e12181f,
title = "Patterns and statistics of in-water polarization under conditions of linear and nonlinear ocean surface waves",
abstract = "We study the polarization properties of the light field under a dynamic ocean surface using realistic linear and nonlinear ocean surface waves. The three-dimensional polarized radiative transfer of the dynamic ocean-atmosphere system is considered using a Monte Carlo vector radiative transfer simulation for arbitrary depth. The program is validated with measurement data taken in Hawaii during the Radiance in a Dynamic Ocean project. The main focus of this study is the influence of the wind-driven ocean waves on the polarization patterns and statistics at different optical depths under various conditions of light wavelength and solar incidence. Of special interest is the effect of the nonlinearity of the surface waves on the polarization statistics. To facilitate the study, phase-resolved direct simulations of the linear and nonlinear surface wavefields are performed using a high-order spectral method. The results show that the time-averaged degree of polarization within the Snell's window is dependent on the mean square slope of the ocean surface. Higher mean square slope, or wind speed, leads to a smaller degree of polarization. At the same time, the variability of the degree of polarization has a strong dependence on the surface roughness. A rougher ocean surface induces higher variability of the degree of polarization. The effect of wave nonlinearity can be neglected for the mean value of polarization, but is manifested in the variability of the degree of polarization, with a general increase in the variance with increasing wave nonlinearity. The present findings provide possible mechanisms for characterizing the dynamic ocean surface based on underwater polarized light measurements.",
author = "Zao Xu and Yue, {Dick K P} and Lian Shen and Kenneth Voss",
year = "2011",
doi = "10.1029/2011JC007350",
language = "English (US)",
volume = "116",
journal = "Journal of Geophysical Research: Oceans",
issn = "2169-9275",
publisher = "Wiley-Blackwell",
number = "12",

}

TY - JOUR

T1 - Patterns and statistics of in-water polarization under conditions of linear and nonlinear ocean surface waves

AU - Xu, Zao

AU - Yue, Dick K P

AU - Shen, Lian

AU - Voss, Kenneth

PY - 2011

Y1 - 2011

N2 - We study the polarization properties of the light field under a dynamic ocean surface using realistic linear and nonlinear ocean surface waves. The three-dimensional polarized radiative transfer of the dynamic ocean-atmosphere system is considered using a Monte Carlo vector radiative transfer simulation for arbitrary depth. The program is validated with measurement data taken in Hawaii during the Radiance in a Dynamic Ocean project. The main focus of this study is the influence of the wind-driven ocean waves on the polarization patterns and statistics at different optical depths under various conditions of light wavelength and solar incidence. Of special interest is the effect of the nonlinearity of the surface waves on the polarization statistics. To facilitate the study, phase-resolved direct simulations of the linear and nonlinear surface wavefields are performed using a high-order spectral method. The results show that the time-averaged degree of polarization within the Snell's window is dependent on the mean square slope of the ocean surface. Higher mean square slope, or wind speed, leads to a smaller degree of polarization. At the same time, the variability of the degree of polarization has a strong dependence on the surface roughness. A rougher ocean surface induces higher variability of the degree of polarization. The effect of wave nonlinearity can be neglected for the mean value of polarization, but is manifested in the variability of the degree of polarization, with a general increase in the variance with increasing wave nonlinearity. The present findings provide possible mechanisms for characterizing the dynamic ocean surface based on underwater polarized light measurements.

AB - We study the polarization properties of the light field under a dynamic ocean surface using realistic linear and nonlinear ocean surface waves. The three-dimensional polarized radiative transfer of the dynamic ocean-atmosphere system is considered using a Monte Carlo vector radiative transfer simulation for arbitrary depth. The program is validated with measurement data taken in Hawaii during the Radiance in a Dynamic Ocean project. The main focus of this study is the influence of the wind-driven ocean waves on the polarization patterns and statistics at different optical depths under various conditions of light wavelength and solar incidence. Of special interest is the effect of the nonlinearity of the surface waves on the polarization statistics. To facilitate the study, phase-resolved direct simulations of the linear and nonlinear surface wavefields are performed using a high-order spectral method. The results show that the time-averaged degree of polarization within the Snell's window is dependent on the mean square slope of the ocean surface. Higher mean square slope, or wind speed, leads to a smaller degree of polarization. At the same time, the variability of the degree of polarization has a strong dependence on the surface roughness. A rougher ocean surface induces higher variability of the degree of polarization. The effect of wave nonlinearity can be neglected for the mean value of polarization, but is manifested in the variability of the degree of polarization, with a general increase in the variance with increasing wave nonlinearity. The present findings provide possible mechanisms for characterizing the dynamic ocean surface based on underwater polarized light measurements.

UR - http://www.scopus.com/inward/record.url?scp=82955197426&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=82955197426&partnerID=8YFLogxK

U2 - 10.1029/2011JC007350

DO - 10.1029/2011JC007350

M3 - Article

VL - 116

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9275

IS - 12

M1 - C00H12

ER -