Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis

Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


In type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, β cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that β cell loss, β cell dysfunction, alterations of β cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.

Original languageEnglish (US)
Article numbere134525
JournalJCI Insight
Issue number8
StatePublished - Apr 23 2020

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis'. Together they form a unique fingerprint.

Cite this