Painful neuropathy decreases membrane calcium current in mammalian primary afferent neurons

Quinn H. Hogan, J. Bruce McCallum, Constantine Sarantopoulos, Mark Aason, Michelle Mynlieff, Wai Meng Kwok, Zeljko J. Bosnjak

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


Hyperexcitability of the primary afferent neuron leads to neuropathic pain following injury to peripheral axons. Changes in calcium channel function of sensory neurons following injury have not been directly examined at the channel level, even though calcium is a primary second messenger-regulating neuronal function. We compared calcium currents (I(Ca)) in 101 acutely isolated dorsal root ganglion neurons from 31 rats with neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve, to cells from 25 rats with normal sensory function following sham surgery. Cells projecting to the sciatic nerve were identified with a fluorescent label applied at the CCI site. Membrane function was determined using patch-clamp techniques in current clamp mode, and in voltage-clamp mode using solutions and conditions designed to isolate I(Ca). Somata of peripheral sensory neurons from hyperalgesic rats demonstrated decreased I(Ca). Peak calcium channel current density was diminished by injury from 3.06±0.30 pS/pF to 2.22±0.26 pS/pF in medium neurons, and from 3.93±0.38 pS/pF to 2.99±0.40 pS/pF in large neurons. Under these voltage and pharmacologic conditions, medium-sized neuropathic cells lacked obvious T-type calcium currents which were present in 25% of medium-sized cells from control animals. Altered Ca2+ signalling in injured sensory neurons may contribute to hyperexcitability leading to neuropathic pain. Copyright (C) 2000 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.

Original languageEnglish (US)
Pages (from-to)43-53
Number of pages11
Issue number1-2
StatePublished - May 1 2000
Externally publishedYes


  • Calcium channel
  • Electrophysiology
  • Nerve injury
  • Neuropathic pain

ASJC Scopus subject areas

  • Clinical Neurology
  • Psychiatry and Mental health
  • Neurology
  • Neuroscience(all)
  • Pharmacology
  • Clinical Psychology


Dive into the research topics of 'Painful neuropathy decreases membrane calcium current in mammalian primary afferent neurons'. Together they form a unique fingerprint.

Cite this