Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells

Research output: Contribution to journalArticlepeer-review

137 Scopus citations


Oxytocin is synthesized and released in the heart and vasculature, tissues that also express oxytocin receptors. Although it has been established this intrinsic cardiovascular oxytocin system is important in normal homeostatic cardiac and vascular regulation, a role for this system in cardiovascular pathophysiology has not been investigated. The current study examined the influence of oxytocin on mechanisms in atherogenesis, oxidative stress, and inflammation in cultured human vascular cells, THP-1 monocytes, and macrophages. Oxytocin receptor protein and mRNA expression, NADPH-dependent superoxide activity, and interleukin-6 secretion were measured. Results demonstrated oxytocin receptor protein and mRNA in THP-1 monocytes and macrophages. Incubation of cells at physiological levels of oxytocin significantly decreased basal and stimulated NADPH-dependent superoxide activity in vascular cells, monocytes, and macrophages by 24-48%. Oxytocin also attenuated interleukin-6 secretion from stimulated THP-1 macrophages and endothelial cells by 56 and 26%, respectively. These findings suggest that oxytocin attenuates vascular oxidative stress and inflammation, two important pathophysiological processes in atherosclerosis. The fact that oxytocin receptors are found in monocytes and macrophages, and oxytocin decreases both superoxide production and release of a proinflammatory cytokine from these cells, suggests a potentially larger role for oxytocin in the attenuation of disease.

Original languageEnglish (US)
Pages (from-to)E1495-E1501
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Issue number6
StatePublished - Dec 2008


  • Atherosclerosis
  • Interleukin-6
  • Reduced nicotinamide adenine dinucleotide phosphatase oxidase

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)
  • Endocrinology, Diabetes and Metabolism


Dive into the research topics of 'Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells'. Together they form a unique fingerprint.

Cite this