Optic nerve lipidomics reveal impaired glucosylsphingosine lipids pathway in glaucoma

Muhammad Zain Chauhan, Ann Katrin Valencia, Maria Carmen Piqueras, Mabel Enriquez-Algeciras, Sanjoy K. Bhattacharya

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


PURPOSE. To determine major differences in lipid profile between human control and glaucomatous optic nerve. To assess major enzymes in lipid pathway if aberration is revealed for a lipid class by profiling. METHODS. Optic nerve (ON) samples were obtained from human cadaveric donors [control (n = 11) and primary open-angle glaucoma (POAG; n = 12)]; the lipids were extracted using Bligh and Dyer methods. Control and glaucoma donors were all Caucasians age 72.3 ± 5.9 and 70.3 ± 10.5 (inclusive of both sexes), respectively. Lipids were extracted after weighing the tissue; the protein amounts in the corresponding aqueous phase of organic solvent extraction were recorded. High-resolution mass spectrometry was performed using a Q-exactive mass spectrometer coupled with an EASY-nLC 1000 liquid chromatograph instrument. Bioinformatics and statistical analysis were performed using LipidSearch v.4.1 and MetaboAnalyst 4.0/STATA 14.2. Protein amounts were determined using Bradford’s method. Western blot, ELISA, and immunohistochemistry utilized established protocols and were performed for protein quantification and localization, respectively. Additional donor tissues were utilized for Western blot, ELISA, and immunohistochemistry. RESULTS. Principal component analysis (PCA) placed control and glaucomatous ONs in two distinct groups based on analysis of lipid profiles. Total lipid, total phospholipids, total ceramide, and total sphingolipids were similar (without significant difference) between control and glaucoma. However, we found a significant increase in glucosylsphingosine in glaucoma compared to control samples. We found similar levels of glucocerebrosidase (GBA), ceramide glucosyltransferase (UGCG), decreased nonlysosomal glucocerebrosidase (GBA2), and increased lysosomal and nonlysosomal acylsphingosine amidohydrolase (ASAH1 and ASAH2) levels in glaucomatous ON compared to control. CONCLUSIONS. We found significant differences in glucosylsphingosine lipids, consistent with decreased GBA and GBA2 and increased ASAH1 and ASAH2 immunoreactivity in glaucoma, suggesting the potential impairment of sphingolipid enzymatic pathways in lysosomal and nonlysosomal cellular compartments.

Original languageEnglish (US)
Pages (from-to)1789-1798
Number of pages10
JournalInvestigative Ophthalmology and Visual Science
Issue number5
StatePublished - Apr 2019


  • Glaucoma
  • Glucosylsphingosine
  • Lipidomics
  • POAG
  • Sphingolipid metabolism

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Optic nerve lipidomics reveal impaired glucosylsphingosine lipids pathway in glaucoma'. Together they form a unique fingerprint.

Cite this