TY - JOUR

T1 - On real moduli spaces of holomorphic bundles over M-curves

AU - Saveliev, Nikolai

AU - Wang, Shuguang

N1 - Funding Information:
✩ The first author was partially supported by the NSF Grant DMS 0305946. The second author was partially supported by the University of Missouri Research Board Grant. * Corresponding author. E-mail addresses: saveliev@math.miami.edu (N. Saveliev), sw@math.missouri.edu (S. Wang).

PY - 2011/2/15

Y1 - 2011/2/15

N2 - Let F be a genus g curve and σ:F→F a real structure with the maximal possible number of fixed circles. We study the real moduli space N'=Fix(σ#) where σ#:N→N is the induced real structure on the moduli space N of stable holomorphic bundles of rank 2 over F with fixed non-trivial determinant. In particular, we calculate H*(N',Z) in the case of g=2, generalizing Thaddeus' approach to computing H*(N,Z).

AB - Let F be a genus g curve and σ:F→F a real structure with the maximal possible number of fixed circles. We study the real moduli space N'=Fix(σ#) where σ#:N→N is the induced real structure on the moduli space N of stable holomorphic bundles of rank 2 over F with fixed non-trivial determinant. In particular, we calculate H*(N',Z) in the case of g=2, generalizing Thaddeus' approach to computing H*(N,Z).

KW - Real moduli spaces

KW - Stable holomorphic bundles

UR - http://www.scopus.com/inward/record.url?scp=78650684468&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650684468&partnerID=8YFLogxK

U2 - 10.1016/j.topol.2010.11.005

DO - 10.1016/j.topol.2010.11.005

M3 - Article

AN - SCOPUS:78650684468

VL - 158

SP - 344

EP - 351

JO - Topology and its Applications

JF - Topology and its Applications

SN - 0166-8641

IS - 3

ER -