### Abstract

Let F be a genus g curve and σ:F→F a real structure with the maximal possible number of fixed circles. We study the real moduli space N^{'}=Fix(σ#) where σ#:N→N is the induced real structure on the moduli space N of stable holomorphic bundles of rank 2 over F with fixed non-trivial determinant. In particular, we calculate H^{*}(N^{'},Z) in the case of g=2, generalizing Thaddeus' approach to computing H^{*}(N,Z).

Original language | English (US) |
---|---|

Pages (from-to) | 344-351 |

Number of pages | 8 |

Journal | Topology and its Applications |

Volume | 158 |

Issue number | 3 |

DOIs | |

State | Published - Feb 15 2011 |

### Fingerprint

### Keywords

- Real moduli spaces
- Stable holomorphic bundles

### ASJC Scopus subject areas

- Geometry and Topology

### Cite this

*Topology and its Applications*,

*158*(3), 344-351. https://doi.org/10.1016/j.topol.2010.11.005

**On real moduli spaces of holomorphic bundles over M-curves.** / Saveliev, Nikolai; Wang, Shuguang.

Research output: Contribution to journal › Article

*Topology and its Applications*, vol. 158, no. 3, pp. 344-351. https://doi.org/10.1016/j.topol.2010.11.005

}

TY - JOUR

T1 - On real moduli spaces of holomorphic bundles over M-curves

AU - Saveliev, Nikolai

AU - Wang, Shuguang

PY - 2011/2/15

Y1 - 2011/2/15

N2 - Let F be a genus g curve and σ:F→F a real structure with the maximal possible number of fixed circles. We study the real moduli space N'=Fix(σ#) where σ#:N→N is the induced real structure on the moduli space N of stable holomorphic bundles of rank 2 over F with fixed non-trivial determinant. In particular, we calculate H*(N',Z) in the case of g=2, generalizing Thaddeus' approach to computing H*(N,Z).

AB - Let F be a genus g curve and σ:F→F a real structure with the maximal possible number of fixed circles. We study the real moduli space N'=Fix(σ#) where σ#:N→N is the induced real structure on the moduli space N of stable holomorphic bundles of rank 2 over F with fixed non-trivial determinant. In particular, we calculate H*(N',Z) in the case of g=2, generalizing Thaddeus' approach to computing H*(N,Z).

KW - Real moduli spaces

KW - Stable holomorphic bundles

UR - http://www.scopus.com/inward/record.url?scp=78650684468&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650684468&partnerID=8YFLogxK

U2 - 10.1016/j.topol.2010.11.005

DO - 10.1016/j.topol.2010.11.005

M3 - Article

VL - 158

SP - 344

EP - 351

JO - Topology and its Applications

JF - Topology and its Applications

SN - 0166-8641

IS - 3

ER -