On balanced realizations of 2-D delta-operator formulated discrete-time systems

Kamal Premaratne, M. M. Ekanayake, P. H. Bauer

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Delta-operator based implementations can avoid the numerical ill-conditioning usually associated with high speed shift-operator based implementations of discrete-time systems. Moreover, it provides a unified methodology for tackling both continuous- and discrete-time systems. In particular, it has been shown that, delta-operator based balanced realizations can offer superior coefficient sensitivity properties under fixed-point arithmetic. In this work, we address computation of balanced realizations. For this purpose, given a discrete-time system, the relationship between its shift- and delta-operator formulated balanced realizations is presented.

Original languageEnglish
Title of host publicationSouthcon Conference Record
Pages18-23
Number of pages6
StatePublished - Jan 1 1995
EventProceedings of the 1995 Southcon Conference - Lauderdale, FL, USA
Duration: Mar 7 1995Mar 7 1995

Other

OtherProceedings of the 1995 Southcon Conference
CityLauderdale, FL, USA
Period3/7/953/7/95

Fingerprint

Fixed point arithmetic

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Cite this

Premaratne, K., Ekanayake, M. M., & Bauer, P. H. (1995). On balanced realizations of 2-D delta-operator formulated discrete-time systems. In Southcon Conference Record (pp. 18-23)

On balanced realizations of 2-D delta-operator formulated discrete-time systems. / Premaratne, Kamal; Ekanayake, M. M.; Bauer, P. H.

Southcon Conference Record. 1995. p. 18-23.

Research output: Chapter in Book/Report/Conference proceedingChapter

Premaratne, K, Ekanayake, MM & Bauer, PH 1995, On balanced realizations of 2-D delta-operator formulated discrete-time systems. in Southcon Conference Record. pp. 18-23, Proceedings of the 1995 Southcon Conference, Lauderdale, FL, USA, 3/7/95.
Premaratne K, Ekanayake MM, Bauer PH. On balanced realizations of 2-D delta-operator formulated discrete-time systems. In Southcon Conference Record. 1995. p. 18-23
Premaratne, Kamal ; Ekanayake, M. M. ; Bauer, P. H. / On balanced realizations of 2-D delta-operator formulated discrete-time systems. Southcon Conference Record. 1995. pp. 18-23
@inbook{9fb1562e5ab14d52ab20878ba7dd3f52,
title = "On balanced realizations of 2-D delta-operator formulated discrete-time systems",
abstract = "Delta-operator based implementations can avoid the numerical ill-conditioning usually associated with high speed shift-operator based implementations of discrete-time systems. Moreover, it provides a unified methodology for tackling both continuous- and discrete-time systems. In particular, it has been shown that, delta-operator based balanced realizations can offer superior coefficient sensitivity properties under fixed-point arithmetic. In this work, we address computation of balanced realizations. For this purpose, given a discrete-time system, the relationship between its shift- and delta-operator formulated balanced realizations is presented.",
author = "Kamal Premaratne and Ekanayake, {M. M.} and Bauer, {P. H.}",
year = "1995",
month = "1",
day = "1",
language = "English",
pages = "18--23",
booktitle = "Southcon Conference Record",

}

TY - CHAP

T1 - On balanced realizations of 2-D delta-operator formulated discrete-time systems

AU - Premaratne, Kamal

AU - Ekanayake, M. M.

AU - Bauer, P. H.

PY - 1995/1/1

Y1 - 1995/1/1

N2 - Delta-operator based implementations can avoid the numerical ill-conditioning usually associated with high speed shift-operator based implementations of discrete-time systems. Moreover, it provides a unified methodology for tackling both continuous- and discrete-time systems. In particular, it has been shown that, delta-operator based balanced realizations can offer superior coefficient sensitivity properties under fixed-point arithmetic. In this work, we address computation of balanced realizations. For this purpose, given a discrete-time system, the relationship between its shift- and delta-operator formulated balanced realizations is presented.

AB - Delta-operator based implementations can avoid the numerical ill-conditioning usually associated with high speed shift-operator based implementations of discrete-time systems. Moreover, it provides a unified methodology for tackling both continuous- and discrete-time systems. In particular, it has been shown that, delta-operator based balanced realizations can offer superior coefficient sensitivity properties under fixed-point arithmetic. In this work, we address computation of balanced realizations. For this purpose, given a discrete-time system, the relationship between its shift- and delta-operator formulated balanced realizations is presented.

UR - http://www.scopus.com/inward/record.url?scp=0029227078&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029227078&partnerID=8YFLogxK

M3 - Chapter

SP - 18

EP - 23

BT - Southcon Conference Record

ER -