Abstract
β-Neuregulin (βNRG) is a potent Schwann cell survival factor that binds to and activates a heterodimeric ErbB2/ErbB3 receptor complex. We found that NRG receptor signaling rapidly activated phosphoinositide 3-kinase (PI3K) in serum-starved Schwann cells, while PI3K inhibitors markedly exacerbated apoptosis and completely blocked NRG-mediated rescue. NRG also rapidly signaled the phosphorylation of mitogen-activated protein kinase (MAPK) and the serine/threonine kinase Akt. The activation of Akt and MAPK in parallel pathways downstream from PI3K resulted in the phosphorylation of Bad at different serine residues. PI3K inhibitors that blocked NRG-mediated rescue also blocked the phosphorylation of Akt, MAPK, and Bad. However, selective inhibition of MEK-dependent Bad phosphorylation downstream from PI3K had no effect on NRG-mediated survival. Conversely, ectopic expression of wild-type Akt not only enhanced Bad phosphorylation but also enhanced autocrine- and NRG-mediated Schwann cell survival. Taken together, these results demonstrate that NRG receptor signaling through a PI3K/Akt/Bad pathway functions in Schwann cell survival.
Original language | English (US) |
---|---|
Pages (from-to) | 761-767 |
Number of pages | 7 |
Journal | Molecular and Cellular Neuroscience |
Volume | 17 |
Issue number | 4 |
DOIs | |
State | Published - Jan 1 2001 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Cellular and Molecular Neuroscience
- Cell Biology