Neural network assessment of perioperative cardiac risk in vascular surgery patients

Pablo Lapuerta, Gilbert J. L'Italien, Sumita Paul, Robert Hendel, Jeffrey A. Leppo, A. Lee Fleisher, Mylan C. Cohen, Kim A. Eagle, Robert P. Giugliano

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

Neural networks were developed to predict perioperative cardiac complications with data from 567 vascular surgery patients. Neural network scores were based on cardiac risk factors and dipyridamole thallium results. These scores were converted into likelihood ratios that predicted cardiac risk. The prognostic accuracy of the neural networks was similar to that of logistic regression models (ROC areas 76.0% vs 75.8%), but their calibration was better. Logistic regression overestimated event rates in a group of high- risk patients (predicted event rate, 64%; observed rate 30%; n = 50, p < 0.001). On a validation set of 514 patients, the neural networks still had ROC similar areas to those of logistic regression (68.3% vs 67.5%), but logistic regression again overestimated event rates for a group of high-risk patients. The calibration difference was reflected in the Hosmer-Lemeshow chi-square statistic (18.8 for the neural networks, 45.0 for logistic regression). The neural networks successfully estimated perioperative cardiac risk with better calibration than comparable logistic regression models.

Original languageEnglish
Pages (from-to)70-75
Number of pages6
JournalMedical Decision Making
Volume18
Issue number1
DOIs
StatePublished - Jan 29 1998
Externally publishedYes

    Fingerprint

Keywords

  • Bayes' theorem
  • Cardiac risk
  • Likelihood ratio
  • Logistic regression
  • Neural networks

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Health Informatics
  • Health Information Management
  • Nursing(all)

Cite this

Lapuerta, P., L'Italien, G. J., Paul, S., Hendel, R., Leppo, J. A., Fleisher, A. L., Cohen, M. C., Eagle, K. A., & Giugliano, R. P. (1998). Neural network assessment of perioperative cardiac risk in vascular surgery patients. Medical Decision Making, 18(1), 70-75. https://doi.org/10.1177/0272989X9801800114