Multivariate-spline and scale-specific solution for variational analyses

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A recipe for a cubic B-spline-based solution for multivariate variational formulation of a data analysis and assimilation problem is provided. To represent a signal whose smallest wavelength is L, the spline scale must be at most L/2, or approximately the Nyquist wavelength. This spline scale defines the computational grid, which tends to be coarser than the typical grid required for finite-difference discretization and hence offers a significant advantage in computational efficiency. The geostrophy-thin-plate model is introduced and applied to a set of analysis problems to demonstrate the effectiveness of the solution technique.

Original languageEnglish (US)
Pages (from-to)379-386
Number of pages8
JournalJournal of Atmospheric and Oceanic Technology
Volume21
Issue number2
DOIs
StatePublished - Feb 2004
Externally publishedYes

ASJC Scopus subject areas

  • Ocean Engineering
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Multivariate-spline and scale-specific solution for variational analyses'. Together they form a unique fingerprint.

Cite this