Multi-Resolution Overlapping Stripes Network for Person Re-Identification

Arda Efe Okay, Manal Alghamdi, Robert Westendrop, Mohamed Abdel-Mottaleb

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper addresses the person re-identification (PReID) problem by combining global and local information at multiple feature resolutions with different loss functions. Many previous studies address this problem using either part-based features or global features. In case of part-based representation, the spatial correlation between these parts is not considered, while global-based representation are not sensitive to spatial variations. This paper presents a part-based model with a multi-resolution network that uses different level of features. The output of the last two conv blocks is then partitioned horizontally and processed in pairs with overlapping stripes to cover the important information that might lie between parts. We use different loss functions to combine local and global information for classification. Experimental results on a benchmark dataset demonstrate that the presented method outperforms the state-of-the-art methods.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3652-3656
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period5/4/205/8/20

Keywords

  • CNN
  • Person re-identification
  • classification
  • multi-resolution

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Cite this