TY - JOUR
T1 - Morphometry of the subepithelial circulation in sheep airways
T2 - Effect of vascular congestion
AU - Mariassy, A. T.
AU - Gazeroglu, H.
AU - Wanner, A.
PY - 1991
Y1 - 1991
N2 - In order to quantitate the subepithelial microvascular volume and its relation to the airway lumen, we conducted a morphometric analysis of the vascular compartment in the wall of the trachea (within a 55-μm depth from the epithelial basement membrane) and of 1.0 and 0.5-mm bronchioles of sheep. The lungs were fixed by bronchial and pulmonary artery perfusion with glutaraldehyde under three experimental conditions: (1) bronchial artery pressure, 100 mm Hg pulmonary artery pressure, 20 mm Hg (control); (2) bronchial artery pressure, 100 mm Hg, pulmonary artery pressure, 40 mm Hg (pulmonary hypertension, PH); (3) bronchial artery pressure, 100 mm Hg, pulmonary artery pressure, 40 mm Hg (pharmacologic vasodilation with sodium nitroprusside, PH + V). Venous pressures were atmospheric. Under control conditions, the microvascular volume fraction comprised 12, 16, and 15% of the subepithelial tissue in the trachea and 1-mm and 0.5-mm bronchioles, respectively. PH increased the microvascular volume fraction in the bronchioles (p < 0.05), but it had no effect on the microvasculature in the trachea. PH + V approximately doubled the microvascular volume fraction in the trachea and the bronchioles. PH increased the mean wall thickness, and PH and PH + V decreased the airway cross-sectional area in the 1-mm bronchioles. These observations demonstrate that the microvasculature constitutes a considerable volume fraction of the subepithelial airway tissue and that vascular congestion can narrow the bronchiolar lumen.
AB - In order to quantitate the subepithelial microvascular volume and its relation to the airway lumen, we conducted a morphometric analysis of the vascular compartment in the wall of the trachea (within a 55-μm depth from the epithelial basement membrane) and of 1.0 and 0.5-mm bronchioles of sheep. The lungs were fixed by bronchial and pulmonary artery perfusion with glutaraldehyde under three experimental conditions: (1) bronchial artery pressure, 100 mm Hg pulmonary artery pressure, 20 mm Hg (control); (2) bronchial artery pressure, 100 mm Hg, pulmonary artery pressure, 40 mm Hg (pulmonary hypertension, PH); (3) bronchial artery pressure, 100 mm Hg, pulmonary artery pressure, 40 mm Hg (pharmacologic vasodilation with sodium nitroprusside, PH + V). Venous pressures were atmospheric. Under control conditions, the microvascular volume fraction comprised 12, 16, and 15% of the subepithelial tissue in the trachea and 1-mm and 0.5-mm bronchioles, respectively. PH increased the microvascular volume fraction in the bronchioles (p < 0.05), but it had no effect on the microvasculature in the trachea. PH + V approximately doubled the microvascular volume fraction in the trachea and the bronchioles. PH increased the mean wall thickness, and PH and PH + V decreased the airway cross-sectional area in the 1-mm bronchioles. These observations demonstrate that the microvasculature constitutes a considerable volume fraction of the subepithelial airway tissue and that vascular congestion can narrow the bronchiolar lumen.
UR - http://www.scopus.com/inward/record.url?scp=0026098617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026098617&partnerID=8YFLogxK
U2 - 10.1164/ajrccm/143.1.162
DO - 10.1164/ajrccm/143.1.162
M3 - Article
C2 - 1986673
AN - SCOPUS:0026098617
VL - 143
SP - 162
EP - 166
JO - American Journal of Respiratory and Critical Care Medicine
JF - American Journal of Respiratory and Critical Care Medicine
SN - 1073-449X
IS - 1
ER -