Abstract
Marked morphological responses occur in the gills of freshwater rainbow trout in response to experimental acid-base disturbance and these responses play an important role in acid-base correction. Compensated respiratory acidosis induced by 70h exposure to environmental hyperoxia (elevated water PO2) caused a 33% decrease in branchial chloride cell fractional surface area (CCFA). Metabolic alkalosis induced by normoxic recovery (6h) from hyperoxia (72h) caused a 50% increase in CCFA, whereas metabolic alkalosis induced by infusion (19h) of NaHCO3 caused a 70% rise. However, the largest increase (135%) in CCFA was seen in response to infusion (19h) of HCl. NaCl infusion had no effect. A particular goal was to assess the relative importance of changes in CCFA vs. changes in internal substrate (HCO3-) availability in regulating the activity of the branchial Cl-/HCO3- exchange system. For each of the experimental treatments, the accompanying blood acid-base status and branchial transport kinetics (Km, Jmax) for Cl- uptake had been determined in earlier studies. In the present study, a positive linear relationship was established between CCFA and JCl-max in individual control fish in the absence of an acid-base disturbance. By reference to this relationship, observed changes in JCl-max during metabolic acid-base disturbances were clearly due to changes in both CCFA and internal substrate levels (plasma [HCO3-]) with the two factors having approximately equal influence.
Original language | English (US) |
---|---|
Pages (from-to) | 465-477 |
Number of pages | 13 |
Journal | Fish Physiology and Biochemistry |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - Mar 1 1994 |
Keywords
- acid-base
- chloride cell
- fish
- J
- K
- kinetics
- morphology
ASJC Scopus subject areas
- Physiology (medical)
- Physiology
- Biochemistry
- Biochemistry, Genetics and Molecular Biology(all)
- Aquatic Science