Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro

Heike Hall, Thomas Baechi, Jeffrey A. Hubbell

Research output: Contribution to journalArticlepeer-review

75 Scopus citations


The molecular properties of fibrin-based matrices, such as fibrillar structure and covalent modifications with adhesion domains, influence the angiogenic behavior of human umbilical vein endothelial cells (HUVECs) in vitro. The fibrillar structure of fibrin-based matrices was influenced by pH but not by covalent incorporation of exogenous adhesion domains. Native fibrin-based matrices polymerized at pH 10 formed organized and longitudinally oriented fibrin fibrils, which provided a good angiogenic substrate for endothelial cells. Furthermore, upon covalent incorporation of the model ligand LIIg6, which binds to the integrin most prominently expressed on the surface of angiogenic endothelial cells, αvβ3, these matrices became angiogenesis-promoting when polymerized at physiological pH. The amount of incorporation of LIIg6 into the matrices depended on the fibrinogen concentration on all three fibrin chains. Soluble forms of LIIg6 diffused rapidly out of the matrix. Most important, LIIg6-modified matrices were very specific in inducing the angiogenic phenotype of HUVECs, whereas control cells did not differentiate on these matrices. Our results indicate that artificial extracellular matrices can influence cell behavior in two ways. One way is based on the three-dimensional fibril structure of the matrix molecules themselves, and the other is due to providing specific binding sites for direct cell-matrix interactions that lead to the activation of second-messenger cascades and thus promoting angiogenic differentiation.

Original languageEnglish (US)
Pages (from-to)315-326
Number of pages12
JournalMicrovascular Research
Issue number3
StatePublished - Jan 1 2001


  • αvβ3-integrin
  • Angiogenesis
  • Extracellular matrix
  • Fibrin fibrillar structure
  • Fibrin-based matrices
  • LIIg6

ASJC Scopus subject areas

  • Biochemistry
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro'. Together they form a unique fingerprint.

Cite this