Molecular mechanism of WW-domain binding protein-2 coactivation function in estrogen receptor signaling

Laura Buffa, Ali M. Saeed, Zafar Nawaz

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

The link between breast cancer and estrogen receptor (ER) is well established. The ER is a hormone-inducible transcription factor that, upon binding to its ligand, regulates the expression of a variety of genes mainly involved in cell proliferation and differentiation. Coactivators are proteins recruited by the hormone-activated receptor, which allow or enhance the ER transactivation functions by acting as chromatin remodeling enzymes or adaptors between ER and the transcriptional machinery. Our laboratory has previously identified the WW-domain binding protein-2 (WBP-2) as a bona fide coactivator of ER. However, the molecular mechanism underlying WBP-2 coactivation function was not clear yet. In this study, we explore and identify the mechanism by which WBP-2 acts as coactivator of ER. Our data show that WBP-2 is involved in the regulation of ER target genes, and its expression is required for the proper expression of some ER target genes. To clarify the molecular mechanism by which WBP-2 regulates ER function, we performed chromatin immunoprecipitation assays. We demonstrate here that WBP-2 binds to the ER target gene promoter pS2 promoter and is required for the binding of the phosphorylated form of RNA polymerase II (associated with active transcription/elongation) to the same promoter. Furthermore, we also show that WBP-2 is essential for the recruitment of the histone acetyl transferase p300, an important chromatin modifier enzyme and for histone acetylation at the same target region. Collectively, our data indicate that WBP-2 enhances ER transactivation function at certain genes by facilitating the recruitment and/or the stabilization of a histone modifier enzyme that favors a relaxed chromatin structure, permissive of transcription.

Original languageEnglish (US)
Pages (from-to)76-84
Number of pages9
JournalIUBMB life
Volume65
Issue number1
DOIs
StatePublished - Jan 2013

Keywords

  • coactivator
  • estrogen receptor
  • histone modifications
  • p300
  • transactivation
  • WW-domain binding protein 2

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Clinical Biochemistry
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Molecular mechanism of WW-domain binding protein-2 coactivation function in estrogen receptor signaling'. Together they form a unique fingerprint.

  • Cite this