Molecular for the dynamic strength of the integrin α 4β1/VCAM-1 interaction

Xiaohui Zhang, Susan E. Craig, Hishani Kirby, Martin J. Humphries, Vincent T. Moy

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


Intercellular adhesion mediated by integrin α4β 1 and vascular cell adhesion molecule-1 (VCAM-1) plays a crucial role in both the rolling and firm attachment of leukocytes onto the vascular endothelium. Essential to the α4β1/VCAM-1 interaction is its mechanical strength that allows the complex to resist the large shear forces imposed by the bloodstream. Herein we employed single-molecule dynamic force spectroscopy to investigate the dynamic strength of the α4β1/VCAM-1 complex. Our force measurements revealed that the dissociation of the α4β 1/VCAM-1 complex involves overcoming at least two activation potential barriers: a steep inner barrier and a more elevated outer barrier. The inner barrier grants the complex the tensile strength to withstand large pulling forces (>50 pN) and was attributed to the ionic interaction between the chelated Mg2+ ion at the N-terminal A-domain of the β1 subunit of α4β1 and the carboxyl group of Asp-40 of VCAM-1 through the use of site-directed mutations. In general, additional mutations within the C-D loop of domain 1 of VCAM-1 suppressed both inner and outer barriers of the α4β 1/VCAM-1 complex, while a mutation at Asp-143 of domain 2 of VCAM-1 resulted in the suppression of the outer barrier, but not the inner barrier. In contrast, the outer barrier of α4β1/VCAM-1 complex was stabilized by integrin activation. Together, these findings provide a molecular explanation for the functionally relevant kinetic properties of the α4β1/ VCAM-1 interaction.

Original languageEnglish (US)
Pages (from-to)3470-3478
Number of pages9
JournalBiophysical journal
Issue number5
StatePublished - Nov 2004

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'Molecular for the dynamic strength of the integrin α <sub>4</sub>β<sub>1</sub>/VCAM-1 interaction'. Together they form a unique fingerprint.

Cite this