Modulation by inositol of cholinergic-and serotonergic-induced seizures in lithium-treated rats

Mary B. Williams, Richard S. Jope

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Hippocampal and cortical EEG recordings in rats were used to monitor the in vivo modulation by lithium of responses to agonists for 5HT2/5HT1c serotonergic (DOI) and cholinergic (pilocarpine) receptors and the influence of inositol administration. Administration of DOI (8 mg/kg) or pilocarpine (30 mg/kg) to rats pretreated with lithium acutely (3 mmol/kg) or chronically (dietary, 4 weeks) resulted in seizures, whereas these doses did not cause seizures without lithium pretreatment. This indicated that lithium most likely affects a signal transduction process common to both systems, which is the phophoinositide second messenger system. To examine the potential influence of altered inositol levels on these responses, we tested the effects of infusions (10 mg, i.c.v.) of myo-inositol, a precursor of phosphoinositide synthesis, and of epi-inositol, an isomer not used for phosphoinositede synthesis. Administration of myo-inositol (10 mg) slightly reduced the incidence of seizures induced by acute lithium plus DOI but almost completely blocked seizures induced by acute lithium plus pilocarpine. This was surprising since seizures induced by acute lithium plus DOI were less severe than those after acute lithium plus pilocarpine, but myo-inositol was more effective in blocking the latter. Epi-inositol also blocked seizures under both conditions but it was less effective than myo-inositol after treatment with acute lithium plus pilocarpine. the latencies to seizures and/or severity of seizures were potentiated more by chronic than acute lithoum pretreatment with both DOI and pilocarpine, but attenuation by myo-inositol was less with each agonist after chronic lithium compared with acute lithium treatment. Peripheral administration of a high dose of myo-inositol blocked seizures induced by acute lithium plus pilocarpine, but the inositol treatment itself was toxic and caused seizures prior to pilocarpine administration, so the mechanism of action cannot simply be attributed to increased brain inositol levels. These results demonstrate that lithium modulates the in vivo responses to DOI and pilocarpine, most probably through an effect on the phosphoinositide signal transduction system. They also show that centrally administered myo-inositol modifies responses to these agents, but the effectiveness of epi-inositol and other results have leave unclear the mechanistic basis of its actions.

Original languageEnglish (US)
Pages (from-to)169-178
Number of pages10
JournalBrain research
Volume685
Issue number1-2
DOIs
StatePublished - Jul 10 1995
Externally publishedYes

Keywords

  • Cholinergic
  • Inositol
  • Lithium
  • Phosphoinositide
  • Seizure
  • Serotonergic

ASJC Scopus subject areas

  • Developmental Biology
  • Molecular Biology
  • Clinical Neurology
  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Modulation by inositol of cholinergic-and serotonergic-induced seizures in lithium-treated rats'. Together they form a unique fingerprint.

Cite this