Modelling the responses of Andean and Amazonian plant species to climate change: The effects of georeferencing errors and the importance of data filtering

Kenneth J. Feeley, Miles R. Silman

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Aim: Species distribution models are a potentially powerful tool for predicting the effects of global change on species distributions and the resulting extinction risks. Distribution models rely on relationships between species occurrences and climate and may thus be highly sensitive to georeferencing errors in collection records. Most errors will not be caught using standard data filters. Here we assess the impacts of georeferencing errors and the importance of improved data filtering for estimates of the elevational distributions, habitat areas and predicted relative extinction risks due to climate change of nearly 1000 Neotropical plant species. Location: The Amazon basin and tropical Andes, South America. Methods: We model the elevational distributions, or 'envelopes', of 932 Amazonian and Andean plant species from 35 families after performing standard data filtering, and again using only data that have passed through an additional layer of data filtering. We test for agreement in the elevations recorded with the collection and the elevation inferred from a digital elevation model (DEM) at the collection coordinates. From each dataset we estimate species range areas and extinction risks due to the changes in habitat area caused by a 4.5 °C increase in temperature. Results: Amazonian and Andean plant species have a median elevational range of 717 m. Using only standard data filters inflates range limits by a median of 433 m (55%). This is equivalent to overestimating the temperature tolerances of species by over 3 °C - only slightly less than the entire regional temperature change predicted over the next 50-100 years. Georeferencing errors tend to cause overestimates in the amount of climatically suitable habitat available to species and underestimates in species extinction risks due to global warming. Georeferencing error artefacts are sometimes so great that accurately predicting whether species habitat areas will decrease or increase under global warming is impossible. The drawback of additional data filtering is large decreases in the number of species modelled, with Andean species being disproportionately eliminated. Main conclusions: Even with rigorous data filters, distribution models will mischaracterize the climatic conditions under which species occur due to errors in the collection data. These errors affect predictions of the effects of climate change on species ranges and biodiversity, and are particularly problematic in mountainous areas. Additional data filtering reduces georeferencing errors but eliminates many species due to a lack of sufficient 'clean' data, thereby limiting our ability to predict the effects of climate change in many ecologically important and sensitive regions such as the Andes Biodiversity Hotspot.

Original languageEnglish (US)
Pages (from-to)733-740
Number of pages8
JournalJournal of Biogeography
Volume37
Issue number4
DOIs
StatePublished - Apr 1 2010
Externally publishedYes

Keywords

  • Bioclimatic niches
  • Climate change
  • Collection records
  • Conservation biogeography
  • Data filters
  • Extinction risk
  • Global warming
  • Habitat distribution models
  • Herbarium data
  • Range maps

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint Dive into the research topics of 'Modelling the responses of Andean and Amazonian plant species to climate change: The effects of georeferencing errors and the importance of data filtering'. Together they form a unique fingerprint.

Cite this