Modeling the transmission dynamics and control of rabies in China

Research output: Contribution to journalReview article

5 Citations (Scopus)

Abstract

Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction–diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.

Original languageEnglish (US)
Pages (from-to)65-93
Number of pages29
JournalMathematical Biosciences
Volume286
DOIs
StatePublished - Apr 1 2017

Fingerprint

Rabies
rabies
China
Modeling
Dogs
dogs
Model
Rabies virus
Viruses
Virus
Patch
Human
Seasonality
Endemic Equilibrium
Wave Speed
Public Health
Public health
Medical problems
Reaction-diffusion Equations
Bites and Stings

Keywords

  • Basic reproduction number
  • Geographic spread
  • Mathematical modeling
  • Rabies
  • Seasonality
  • Transmission dynamics

ASJC Scopus subject areas

  • Statistics and Probability
  • Medicine(all)
  • Modeling and Simulation
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Cite this

Modeling the transmission dynamics and control of rabies in China. / Ruan, Shigui.

In: Mathematical Biosciences, Vol. 286, 01.04.2017, p. 65-93.

Research output: Contribution to journalReview article

@article{a8a78c807ffa4b0ea3748ed05f6de1be,
title = "Modeling the transmission dynamics and control of rabies in China",
abstract = "Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95{\%} of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction–diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.",
keywords = "Basic reproduction number, Geographic spread, Mathematical modeling, Rabies, Seasonality, Transmission dynamics",
author = "Shigui Ruan",
year = "2017",
month = "4",
day = "1",
doi = "10.1016/j.mbs.2017.02.005",
language = "English (US)",
volume = "286",
pages = "65--93",
journal = "Mathematical Biosciences",
issn = "0025-5564",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Modeling the transmission dynamics and control of rabies in China

AU - Ruan, Shigui

PY - 2017/4/1

Y1 - 2017/4/1

N2 - Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction–diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.

AB - Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction–diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.

KW - Basic reproduction number

KW - Geographic spread

KW - Mathematical modeling

KW - Rabies

KW - Seasonality

KW - Transmission dynamics

UR - http://www.scopus.com/inward/record.url?scp=85013435838&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85013435838&partnerID=8YFLogxK

U2 - 10.1016/j.mbs.2017.02.005

DO - 10.1016/j.mbs.2017.02.005

M3 - Review article

C2 - 28188732

AN - SCOPUS:85013435838

VL - 286

SP - 65

EP - 93

JO - Mathematical Biosciences

JF - Mathematical Biosciences

SN - 0025-5564

ER -