Modeling Insurgent Dynamics Including Heterogeneity: A Statistical Physics Approach

Neil F. Johnson, Pedro Manrique, Pak Ming Hui

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Despite the myriad complexities inherent in human conflict, a common pattern has been identified across a wide range of modern insurgencies and terrorist campaigns involving the severity of individual events-namely an approximate power-law x with exponent α≈2. 5. We recently proposed a simple toy model to explain this finding, built around the reported loose and transient nature of operational cells of insurgents or terrorists. Although it reproduces the 2. 5 power-law, this toy model assumes every actor is identical. Here we generalize this toy model to incorporate individual heterogeneity while retaining the model's analytic solvability. In the case of kinship or team rules guiding the cell dynamics, we find that this 2. 5 analytic result persists-however an interesting new phase transition emerges whereby this cell distribution undergoes a transition to a phase in which the individuals become isolated and hence all the cells have spontaneously disintegrated. Apart from extending our understanding of the empirical 2. 5 result for insurgencies and terrorism, this work illustrates how other statistical physics models of human grouping might usefully be generalized in order to explore the effect of diverse human social, cultural or behavioral traits.

Original languageEnglish (US)
Pages (from-to)395-413
Number of pages19
JournalJournal of Statistical Physics
Volume151
Issue number3-4
DOIs
StatePublished - Jan 1 2013

Keywords

  • Conflict
  • Many-body
  • Social dynamics

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Dive into the research topics of 'Modeling Insurgent Dynamics Including Heterogeneity: A Statistical Physics Approach'. Together they form a unique fingerprint.

  • Cite this