Modeling and analysis of fuzzy systems using finite element method

S. S. Rao, P. N. Weintraub

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations


Traditional finite element approaches require crisp or well defined input parameters. For instance, given the geometry, material properties, load and boundary conditions as deterministic values, a crisp result can be calculated on an element by element basis. The objective of this work is to consider analytical problems where the information available is incomplete, uncertain, or involves user preferences. A current method that can handle certain types of uncertainty is stochastic analysis, in which some or all of the input parameters are described by probability distributions. When combined with the finite element procedure, complex mechanical problems with random inputs can be solved for the stochastic response. However, the method does not cover the areas of incomplete information, or the area of including more information, such as user preferences. For this reason, fuzzy mathematics and the finite element procedure are combined in this work. Fuzzy theory describes means by which incomplete or subjective information can be represented in analytical form. A methodology for fuzzy finite element analysis is described, and comparisons to the stochastic procedure are made where applicable. Results for bars, beams, plates, and thermal problems are discussed.

ASJC Scopus subject areas

  • Architecture
  • Materials Science(all)
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Modeling and analysis of fuzzy systems using finite element method'. Together they form a unique fingerprint.

Cite this