Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation

Eui Seok Chung, Brian J Soden, Byung Ju Sohn, Johannes Schmetz

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The depiction of water vapor in the upper troposphere in Geophysical Fluid Dynamics Laboratory (GFDL) climate model and ERA-40 reanalysis is evaluated through a model-to-radiance approach. Brightness temperatures of High-Resolution Infrared Radiation Sounder (HIRS) 6.7 μm channel, Special Sensor for Microwave Water Vapor Profiler (SSM/T-2) 183.31 ± 1 GHz channel, and Microwave Sounding Unit (MSU) 60 GHz channel simulated with data from the GFDL climate model and ERA-40 reanalysis show a distinct cold and moist bias in the upper troposphere compared to satellite observations, particularly over the subtropics. Temperature biases are a common feature in many climate models and complicate the interpretation of radiance-based comparisons with satellite data. We introduce a new method for evaluating the water vapor distribution which combines both HIRS 6.7 μm and SSM/T-2 183.31 ± 1 GHz channels and is much less sensitive to tropospheric temperature biases. Using this method, we show that GFDL climate model has a more humid upper troposphere over dry subtropical area than ERA-40 reanalysis. The geographical distribution of the humidity bias is found to exhibit a close association with differences in the 500 hPa vertical pressure velocity, suggesting that much of the bias in tropical upper tropospheric relative humidity can be attributed to errors in simulating the intensity of large-scale tropical circulation. Given the strong dependence of upper tropospheric water vapor on the large-scale circulation, these results suggest that long-term monitoring of upper tropospheric water vapor from satellites may also offer insight into variations in the large-scale atmospheric circulation.

Original languageEnglish (US)
Article numberD10110
JournalJournal of Geophysical Research C: Oceans
Volume116
Issue number10
DOIs
StatePublished - 2011

Fingerprint

Troposphere
Steam
Climate models
troposphere
climate models
geophysical fluids
water vapor
humidity
Atmospheric humidity
climate modeling
fluid dynamics
Fluid dynamics
infrared radiation
Satellites
radiance
microwave sounding
Microwaves
Acoustic waves
Geographical distribution
Infrared radiation

ASJC Scopus subject areas

  • Atmospheric Science
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation. / Chung, Eui Seok; Soden, Brian J; Sohn, Byung Ju; Schmetz, Johannes.

In: Journal of Geophysical Research C: Oceans, Vol. 116, No. 10, D10110, 2011.

Research output: Contribution to journalArticle

@article{90ee850564a140bba24ff4cbf64c4879,
title = "Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation",
abstract = "The depiction of water vapor in the upper troposphere in Geophysical Fluid Dynamics Laboratory (GFDL) climate model and ERA-40 reanalysis is evaluated through a model-to-radiance approach. Brightness temperatures of High-Resolution Infrared Radiation Sounder (HIRS) 6.7 μm channel, Special Sensor for Microwave Water Vapor Profiler (SSM/T-2) 183.31 ± 1 GHz channel, and Microwave Sounding Unit (MSU) 60 GHz channel simulated with data from the GFDL climate model and ERA-40 reanalysis show a distinct cold and moist bias in the upper troposphere compared to satellite observations, particularly over the subtropics. Temperature biases are a common feature in many climate models and complicate the interpretation of radiance-based comparisons with satellite data. We introduce a new method for evaluating the water vapor distribution which combines both HIRS 6.7 μm and SSM/T-2 183.31 ± 1 GHz channels and is much less sensitive to tropospheric temperature biases. Using this method, we show that GFDL climate model has a more humid upper troposphere over dry subtropical area than ERA-40 reanalysis. The geographical distribution of the humidity bias is found to exhibit a close association with differences in the 500 hPa vertical pressure velocity, suggesting that much of the bias in tropical upper tropospheric relative humidity can be attributed to errors in simulating the intensity of large-scale tropical circulation. Given the strong dependence of upper tropospheric water vapor on the large-scale circulation, these results suggest that long-term monitoring of upper tropospheric water vapor from satellites may also offer insight into variations in the large-scale atmospheric circulation.",
author = "Chung, {Eui Seok} and Soden, {Brian J} and Sohn, {Byung Ju} and Johannes Schmetz",
year = "2011",
doi = "10.1029/2011JD015609",
language = "English (US)",
volume = "116",
journal = "Journal of Geophysical Research: Oceans",
issn = "2169-9275",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation

AU - Chung, Eui Seok

AU - Soden, Brian J

AU - Sohn, Byung Ju

AU - Schmetz, Johannes

PY - 2011

Y1 - 2011

N2 - The depiction of water vapor in the upper troposphere in Geophysical Fluid Dynamics Laboratory (GFDL) climate model and ERA-40 reanalysis is evaluated through a model-to-radiance approach. Brightness temperatures of High-Resolution Infrared Radiation Sounder (HIRS) 6.7 μm channel, Special Sensor for Microwave Water Vapor Profiler (SSM/T-2) 183.31 ± 1 GHz channel, and Microwave Sounding Unit (MSU) 60 GHz channel simulated with data from the GFDL climate model and ERA-40 reanalysis show a distinct cold and moist bias in the upper troposphere compared to satellite observations, particularly over the subtropics. Temperature biases are a common feature in many climate models and complicate the interpretation of radiance-based comparisons with satellite data. We introduce a new method for evaluating the water vapor distribution which combines both HIRS 6.7 μm and SSM/T-2 183.31 ± 1 GHz channels and is much less sensitive to tropospheric temperature biases. Using this method, we show that GFDL climate model has a more humid upper troposphere over dry subtropical area than ERA-40 reanalysis. The geographical distribution of the humidity bias is found to exhibit a close association with differences in the 500 hPa vertical pressure velocity, suggesting that much of the bias in tropical upper tropospheric relative humidity can be attributed to errors in simulating the intensity of large-scale tropical circulation. Given the strong dependence of upper tropospheric water vapor on the large-scale circulation, these results suggest that long-term monitoring of upper tropospheric water vapor from satellites may also offer insight into variations in the large-scale atmospheric circulation.

AB - The depiction of water vapor in the upper troposphere in Geophysical Fluid Dynamics Laboratory (GFDL) climate model and ERA-40 reanalysis is evaluated through a model-to-radiance approach. Brightness temperatures of High-Resolution Infrared Radiation Sounder (HIRS) 6.7 μm channel, Special Sensor for Microwave Water Vapor Profiler (SSM/T-2) 183.31 ± 1 GHz channel, and Microwave Sounding Unit (MSU) 60 GHz channel simulated with data from the GFDL climate model and ERA-40 reanalysis show a distinct cold and moist bias in the upper troposphere compared to satellite observations, particularly over the subtropics. Temperature biases are a common feature in many climate models and complicate the interpretation of radiance-based comparisons with satellite data. We introduce a new method for evaluating the water vapor distribution which combines both HIRS 6.7 μm and SSM/T-2 183.31 ± 1 GHz channels and is much less sensitive to tropospheric temperature biases. Using this method, we show that GFDL climate model has a more humid upper troposphere over dry subtropical area than ERA-40 reanalysis. The geographical distribution of the humidity bias is found to exhibit a close association with differences in the 500 hPa vertical pressure velocity, suggesting that much of the bias in tropical upper tropospheric relative humidity can be attributed to errors in simulating the intensity of large-scale tropical circulation. Given the strong dependence of upper tropospheric water vapor on the large-scale circulation, these results suggest that long-term monitoring of upper tropospheric water vapor from satellites may also offer insight into variations in the large-scale atmospheric circulation.

UR - http://www.scopus.com/inward/record.url?scp=79958037280&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79958037280&partnerID=8YFLogxK

U2 - 10.1029/2011JD015609

DO - 10.1029/2011JD015609

M3 - Article

VL - 116

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9275

IS - 10

M1 - D10110

ER -