Mitochondria in motor nerve terminals: Function in health and in mutant superoxide dismutase 1 mouse models of familial ALS

Research output: Contribution to journalReview article

17 Scopus citations

Abstract

Mitochondria contribute to neuronal function not only via their ability to generate ATP, but also via their ability to buffer large Ca 2+ loads. This review summarizes evidence that mitochondrial Ca 2+ sequestration is especially important for sustaining the function of vertebrate motor nerve terminals during repetitive stimulation. Motor terminal mitochondria can sequester large amounts of Ca 2+ because they have mechanisms for limiting both the mitochondrial depolarization and the increase in matrix free [Ca 2+] associated with Ca 2+ influx. In mice expressing mutations of human superoxide dismutase ?1 (SOD1) that cause some cases of familial amyotrophic lateral sclerosis (fALS), motor terminals degenerate well before the death of motor neuron cell bodies. This review presents evidence for early and progressive mitochondrial dysfunction in motor terminals of mutant SOD1 mice (G93A, G85R). This dysfunction would impair mitochondrial ability to sequester stimulation-associated Ca 2+ loads, and thus likely contributes to the early degeneration of motor terminals.

Original languageEnglish (US)
Pages (from-to)581-586
Number of pages6
JournalJournal of Bioenergetics and Biomembranes
Volume43
Issue number6
DOIs
StatePublished - Dec 1 2011

Keywords

  • Amyotrophic lateral sclerosis
  • Calcium
  • Mitochondria
  • Motor nerve terminal
  • Superoxide dismutase 1

ASJC Scopus subject areas

  • Physiology
  • Cell Biology

Fingerprint Dive into the research topics of 'Mitochondria in motor nerve terminals: Function in health and in mutant superoxide dismutase 1 mouse models of familial ALS'. Together they form a unique fingerprint.

  • Cite this