TY - JOUR
T1 - Microbial Source Tracking of Fecal Indicating Bacteria in Coral Reef Waters, Recreational Waters, and Groundwater of Saipan by Real-Time Quantitative PCR
AU - Sinigalliano, Christopher
AU - Kim, Kiho
AU - Gidley, Maribeth
AU - Yuknavage, Kathy
AU - Knee, Karen
AU - Palacios, Dean
AU - Bautista, Charito
AU - Bonacolta, Anthony
AU - Lee, Hyo Won
AU - Maurin, Larry
N1 - Funding Information:
This study was funded by NOAA’s Coral Reef Conservation Program (CRCP Project # 31184 to CS and MG) and by the NOAA ‘Omics Initiative Program (to CS and MG). Additional funding and support for the acquisition and operation of the Pall GeneDisc qPCR instrumentation at the CNMI-BECQ was provided by the US EPA. The research for the stable nitrogen
Funding Information:
As part of the broader NOAA technology transition effort to aid BECQ in developing an in-house capacity for qPCR-based molecular MST within the Bureau for Environmental and Coastal Quality, NOAA-AOML and CNMI-BECQ researchers conducted a joint MST baseline study to assess the patterns of host-source FIB from LBSP in the coastal waters of Saipan. This study coincided with and was supported by sampling assistance from American University, which was conducting a separately funded
Funding Information:
We would like to give special recognition to the efforts of the staff of the Water Quality Surveillance/Non-Point Source, Planning, Permitting, and Marine Monitoring Team branches of the BECQ who aided in the collection and processing of water quality samples, without whom this study would not have been completed (listed in alphabetical order): David Benavente, Rodney Camacho, Erin Derrington, Katie Graziano, John Iguel, Joseph Ito, Lyza Johnston, Carlos Ketebengang, Shawn Masga, Vanessa Nogis, Emily Northrop, Olivia Tenorio, and KY. We would also like to especially recognize the staff of the BECQ laboratory who helped analyze samples and provided scientifically defensible data for water quality assessments (listed in alphabetical order): CB, Michael Kapileo, DP, Melvin Piteg, and Jaime Reyes. Finally, we acknowledge and thank the Pall Corporation, GeneDisc Division, for their collaboration and cooperation in adapting the GeneDisc instrumentation, software, and GeneDisc plate format to run the standard microbial source tracking qPCR assays that were transitioned in this project to operations at the BECQ laboratory. Pall Corporation donated personnel time to help in troubleshooting technology transition issues related to the GeneDisc thermocycler platform and provided this study with a supply of instrument-specific consumables such as the custom empty blank GeneDisc plates and associated GeneDisc mastermix reagent. We would especially like to acknowledge the help of Wayne Miller for his coordination efforts between Pall and our research project, and Dr. Stephane Bonilla of the Pall GeneDisc research and development team who helped with troubleshooting the adaptation and modification of the GeneDisc instrument and software to run these MST assays on the GeneDisc platform. Funding. This study was funded by NOAA?s Coral Reef Conservation Program (CRCP Project # 31184 to CS and MG) and by the NOAA ?Omics Initiative Program (to CS and MG). Additional funding and support for the acquisition and operation of the Pall GeneDisc qPCR instrumentation at the CNMI-BECQ was provided by the US EPA. The research for the stable nitrogen isotope and SGD observations was supported by NOAA (award #NA17NOS4820082 to KK and KKn), NASA DC Space Grant (to Melissa A. Knapp and KKn), the Research Grants Council, Hong Kong and the HKU Faculty of Science SIRMS postdoctoral fellowship (T21-602/16-R for Naomi Geeraert). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© Copyright © 2021 Sinigalliano, Kim, Gidley, Yuknavage, Knee, Palacios, Bautista, Bonacolta, Lee and Maurin.
PY - 2021/1/18
Y1 - 2021/1/18
N2 - The Commonwealth of the Northern Mariana Islands (CNMI) recently identified the need to improve its capacity for detecting and tracking land-based sources of pollution (LBSP) in coastal waters, particularly microbial contaminants like fecal indicator bacteria (FIB). Reported here is a baseline study of a suite of host-specific FIB microbial source tracking (MST) markers in the coastal shoreline and reef waters around the island of Saipan. Three sampling campaigns were conducted in September 2017, March 2018, and August 2018. Samples were collected from the nearshore surface waters of Saipan, the reef waters of Saipan Lagoon, and groundwater from beaches along the Saipan Lagoon shoreline. Measurements of submarine groundwater discharge (SGD) into nearshore waters and isotopic source tracking of nitrogen inputs were conducted concurrently with MST. Environmental DNA was extracted from the samples and analyzed by quantitative polymerase chain reaction (qPCR) for MST gene markers of fecal Bacteroidales specifically associated with humans, dogs, cows, and pigs, and for an MST gene marker of Catellicoccus associated with seabirds. MST assessments were combined with local knowledge, assessments of sanitary infrastructure, and routine watershed surveys. This study identified hotspots of human FIB along the western Saipan Lagoon shoreline in both surface waters and groundwater, plus another hotspot of human FIB at a popular tourist bathing area known as the Grotto. FIB hotspots on the Lagoon shoreline coincided with areas of high SGD and nitrogen isotopic data indicating sewage-derived N inputs. It appears that faulty sanitary infrastructure may be contributing to inputs to Saipan Lagoon, while bather shedding is likely a primary input for the Grotto area. Moderate levels of dog fecal contamination were common and widespread across the island. High levels of seabird fecal contamination were more random, both spatially and temporally, and mostly concentrated along the less developed northeast region of Saipan. No significant levels of cow or pig fecal marker were detected in coastal water samples. This study provides demonstration and establishment of analytical capacity to resource management in CNMI for MST technology to aid in trouble-shooting water quality issues involving land-based sources of microbial contaminants to CNMI coastal waters.
AB - The Commonwealth of the Northern Mariana Islands (CNMI) recently identified the need to improve its capacity for detecting and tracking land-based sources of pollution (LBSP) in coastal waters, particularly microbial contaminants like fecal indicator bacteria (FIB). Reported here is a baseline study of a suite of host-specific FIB microbial source tracking (MST) markers in the coastal shoreline and reef waters around the island of Saipan. Three sampling campaigns were conducted in September 2017, March 2018, and August 2018. Samples were collected from the nearshore surface waters of Saipan, the reef waters of Saipan Lagoon, and groundwater from beaches along the Saipan Lagoon shoreline. Measurements of submarine groundwater discharge (SGD) into nearshore waters and isotopic source tracking of nitrogen inputs were conducted concurrently with MST. Environmental DNA was extracted from the samples and analyzed by quantitative polymerase chain reaction (qPCR) for MST gene markers of fecal Bacteroidales specifically associated with humans, dogs, cows, and pigs, and for an MST gene marker of Catellicoccus associated with seabirds. MST assessments were combined with local knowledge, assessments of sanitary infrastructure, and routine watershed surveys. This study identified hotspots of human FIB along the western Saipan Lagoon shoreline in both surface waters and groundwater, plus another hotspot of human FIB at a popular tourist bathing area known as the Grotto. FIB hotspots on the Lagoon shoreline coincided with areas of high SGD and nitrogen isotopic data indicating sewage-derived N inputs. It appears that faulty sanitary infrastructure may be contributing to inputs to Saipan Lagoon, while bather shedding is likely a primary input for the Grotto area. Moderate levels of dog fecal contamination were common and widespread across the island. High levels of seabird fecal contamination were more random, both spatially and temporally, and mostly concentrated along the less developed northeast region of Saipan. No significant levels of cow or pig fecal marker were detected in coastal water samples. This study provides demonstration and establishment of analytical capacity to resource management in CNMI for MST technology to aid in trouble-shooting water quality issues involving land-based sources of microbial contaminants to CNMI coastal waters.
KW - bacteroides
KW - Enterococcus
KW - fecal indicating bacteria
KW - land-based sources of pollution
KW - microbial source tracking
KW - Saipan
KW - water quality
UR - http://www.scopus.com/inward/record.url?scp=85100567904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100567904&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2020.596650
DO - 10.3389/fmicb.2020.596650
M3 - Article
AN - SCOPUS:85100567904
VL - 11
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
SN - 1664-302X
M1 - 596650
ER -