Mercury accumulation in sharks from the coastal waters of southwest Florida

Darren Rumbold, Robert Wasno, Neil Hammerschlag, Aswani Volety

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness.

Original languageEnglish (US)
Pages (from-to)402-412
Number of pages11
JournalArchives of Environmental Contamination and Toxicology
Volume67
Issue number3
DOIs
StatePublished - Oct 1 2014

Fingerprint

Sharks
Mercury
Carbon Isotopes
Tissue
Water
Isotopes
Muscle
Nitrogen
Health
Carbon
Food Chain
Age Factors
Individuality

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Mercury accumulation in sharks from the coastal waters of southwest Florida. / Rumbold, Darren; Wasno, Robert; Hammerschlag, Neil; Volety, Aswani.

In: Archives of Environmental Contamination and Toxicology, Vol. 67, No. 3, 01.10.2014, p. 402-412.

Research output: Contribution to journalArticle

@article{62c3decbcd3d4cbf93bdeb3d9f8297f9,
title = "Mercury accumulation in sharks from the coastal waters of southwest Florida",
abstract = "As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness.",
author = "Darren Rumbold and Robert Wasno and Neil Hammerschlag and Aswani Volety",
year = "2014",
month = "10",
day = "1",
doi = "10.1007/s00244-014-0050-6",
language = "English (US)",
volume = "67",
pages = "402--412",
journal = "Archives of Environmental Contamination and Toxicology",
issn = "0090-4341",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Mercury accumulation in sharks from the coastal waters of southwest Florida

AU - Rumbold, Darren

AU - Wasno, Robert

AU - Hammerschlag, Neil

AU - Volety, Aswani

PY - 2014/10/1

Y1 - 2014/10/1

N2 - As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness.

AB - As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness.

UR - http://www.scopus.com/inward/record.url?scp=84922479699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922479699&partnerID=8YFLogxK

U2 - 10.1007/s00244-014-0050-6

DO - 10.1007/s00244-014-0050-6

M3 - Article

VL - 67

SP - 402

EP - 412

JO - Archives of Environmental Contamination and Toxicology

JF - Archives of Environmental Contamination and Toxicology

SN - 0090-4341

IS - 3

ER -