Mechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin

Zheng D. Liang, David Stockton, Niramol Savaraj, Macus Tien Kuo

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of copper and CDDP. We found that replacements of several methionine residues that are essential for hCtr1-mediated copper transport conferred a dominant-negative effect on the endogenous hCtr1's function, resulting in reduced rates of Cu(I) and CDDP transport and increased resistance to the toxicities of copper and CDDP treatments. Kinetic constant analyses revealed that although these mutations reduced maximal transport rates (Vmax) for Cu(I) and CDDP, reduction of Km only for Cu(I) but not for CDDP was observed. Mutation in Gly167, which is located in the third transmembrane domain and is involved in helix packing of hCtr1, also conferred dominant-negative property of Cu(I) transport but not of CDDP transport. Deleting the N-terminal 45 amino acids that contain two methionine-rich motifs resulted in cytoplasmic localization of the hCtr1 and abolished the dominant-negative function of these mutants. Nonetheless, these mutations did not affect the capacities of hCtr1 oligomerization induced by copper or CDDP, suggesting a distinct structural requirement between metal transport and oligomerization. Finally, we also observed that expressing the dominant-negative hCtr1 mutants up-regulates endogenous hCtr1 mRNA expression, consistent with our previous report that intracellular copper homeostasis and homeostatic levels of hCtr1 mRNA are mutually regulated.

Original languageEnglish
Pages (from-to)843-853
Number of pages11
JournalMolecular Pharmacology
Volume76
Issue number4
DOIs
StatePublished - Oct 1 2009

Fingerprint

Cisplatin
Copper
Ions
Methionine
Mutation
Homeostasis
Messenger RNA
copper transporter 1
Platinum
Antineoplastic Agents
Up-Regulation
Metals
Amino Acids

ASJC Scopus subject areas

  • Pharmacology
  • Molecular Medicine

Cite this

Mechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin. / Liang, Zheng D.; Stockton, David; Savaraj, Niramol; Tien Kuo, Macus.

In: Molecular Pharmacology, Vol. 76, No. 4, 01.10.2009, p. 843-853.

Research output: Contribution to journalArticle

@article{4bd531fd4caa45b3b98af9b0f87e1ef5,
title = "Mechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin",
abstract = "The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of copper and CDDP. We found that replacements of several methionine residues that are essential for hCtr1-mediated copper transport conferred a dominant-negative effect on the endogenous hCtr1's function, resulting in reduced rates of Cu(I) and CDDP transport and increased resistance to the toxicities of copper and CDDP treatments. Kinetic constant analyses revealed that although these mutations reduced maximal transport rates (Vmax) for Cu(I) and CDDP, reduction of Km only for Cu(I) but not for CDDP was observed. Mutation in Gly167, which is located in the third transmembrane domain and is involved in helix packing of hCtr1, also conferred dominant-negative property of Cu(I) transport but not of CDDP transport. Deleting the N-terminal 45 amino acids that contain two methionine-rich motifs resulted in cytoplasmic localization of the hCtr1 and abolished the dominant-negative function of these mutants. Nonetheless, these mutations did not affect the capacities of hCtr1 oligomerization induced by copper or CDDP, suggesting a distinct structural requirement between metal transport and oligomerization. Finally, we also observed that expressing the dominant-negative hCtr1 mutants up-regulates endogenous hCtr1 mRNA expression, consistent with our previous report that intracellular copper homeostasis and homeostatic levels of hCtr1 mRNA are mutually regulated.",
author = "Liang, {Zheng D.} and David Stockton and Niramol Savaraj and {Tien Kuo}, Macus",
year = "2009",
month = "10",
day = "1",
doi = "10.1124/mol.109.056416",
language = "English",
volume = "76",
pages = "843--853",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "4",

}

TY - JOUR

T1 - Mechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin

AU - Liang, Zheng D.

AU - Stockton, David

AU - Savaraj, Niramol

AU - Tien Kuo, Macus

PY - 2009/10/1

Y1 - 2009/10/1

N2 - The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of copper and CDDP. We found that replacements of several methionine residues that are essential for hCtr1-mediated copper transport conferred a dominant-negative effect on the endogenous hCtr1's function, resulting in reduced rates of Cu(I) and CDDP transport and increased resistance to the toxicities of copper and CDDP treatments. Kinetic constant analyses revealed that although these mutations reduced maximal transport rates (Vmax) for Cu(I) and CDDP, reduction of Km only for Cu(I) but not for CDDP was observed. Mutation in Gly167, which is located in the third transmembrane domain and is involved in helix packing of hCtr1, also conferred dominant-negative property of Cu(I) transport but not of CDDP transport. Deleting the N-terminal 45 amino acids that contain two methionine-rich motifs resulted in cytoplasmic localization of the hCtr1 and abolished the dominant-negative function of these mutants. Nonetheless, these mutations did not affect the capacities of hCtr1 oligomerization induced by copper or CDDP, suggesting a distinct structural requirement between metal transport and oligomerization. Finally, we also observed that expressing the dominant-negative hCtr1 mutants up-regulates endogenous hCtr1 mRNA expression, consistent with our previous report that intracellular copper homeostasis and homeostatic levels of hCtr1 mRNA are mutually regulated.

AB - The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of copper and CDDP. We found that replacements of several methionine residues that are essential for hCtr1-mediated copper transport conferred a dominant-negative effect on the endogenous hCtr1's function, resulting in reduced rates of Cu(I) and CDDP transport and increased resistance to the toxicities of copper and CDDP treatments. Kinetic constant analyses revealed that although these mutations reduced maximal transport rates (Vmax) for Cu(I) and CDDP, reduction of Km only for Cu(I) but not for CDDP was observed. Mutation in Gly167, which is located in the third transmembrane domain and is involved in helix packing of hCtr1, also conferred dominant-negative property of Cu(I) transport but not of CDDP transport. Deleting the N-terminal 45 amino acids that contain two methionine-rich motifs resulted in cytoplasmic localization of the hCtr1 and abolished the dominant-negative function of these mutants. Nonetheless, these mutations did not affect the capacities of hCtr1 oligomerization induced by copper or CDDP, suggesting a distinct structural requirement between metal transport and oligomerization. Finally, we also observed that expressing the dominant-negative hCtr1 mutants up-regulates endogenous hCtr1 mRNA expression, consistent with our previous report that intracellular copper homeostasis and homeostatic levels of hCtr1 mRNA are mutually regulated.

UR - http://www.scopus.com/inward/record.url?scp=70349336140&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349336140&partnerID=8YFLogxK

U2 - 10.1124/mol.109.056416

DO - 10.1124/mol.109.056416

M3 - Article

VL - 76

SP - 843

EP - 853

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 4

ER -