Abstract
Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14 Rho) or dominant-negative Rho A (N19 Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin-associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14 Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19 Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.
Original language | English (US) |
---|---|
Pages (from-to) | 1075-1085 |
Number of pages | 11 |
Journal | Kidney international |
Volume | 81 |
Issue number | 11 |
DOIs | |
State | Published - Jun 1 2012 |
Keywords
- cell signaling
- glomerular disease
- podocyte
ASJC Scopus subject areas
- Nephrology