Mechanism of hydrogen peroxide-induced inhibition of sheep airway cilia.

K. Kobayashi, M. Salathé, M. M. Pratt, N. J. Cartagena, F. Soloni, Z. V. Seybold, A. Wanner

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


To study the effect of the inflammatory mediator hydrogen peroxide (H2O2) on airway ciliary activity, we measured ciliary beat frequency (CBF) in cultured tracheal explants from sheep. Addition of H2O2 (10(-8) to 10(-4) M) produced a concentration-dependent mean (+/- SEM) decrease in CBF between 11.1 +/- 0.4% (P less than 0.01) and 100 +/- 0% (P less than 0.001); at each concentration, the maximal effect was reached by 20 to 25 min. Between 10(-8) and 10(-6) M H2O2, the decrease in CBF was reversible, lactate dehydrogenase (LDH) release was not significantly increased, and major morphologic lesions were not seen. At higher concentrations of H2O2, incomplete recovery of CBF (10(-5) M) or irreversible ciliostasis (10(-4) M) developed, and a significant increase in LDH and morphologic lesions were present. Catalase (2,000 U/ml) and H-7 (10(-5) M), a protein kinase inhibitor, abolished cilioinhibition produced by H2O2 at 10(-6) M and lower concentrations but not at 10(-5) M and higher concentrations. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, caused a dose-dependent (10(-11) to 10(-5) M), reversible decrease in CBF; this effect was abolished by H-7. We suggest that at nonlethal concentrations, H2O2 inhibits the beat frequency of airway epithelial cilia reversibly, through the activation of second messengers, including protein kinase C. This mechanism might contribute to the previously demonstrated impairment of mucociliary clearance in airway inflammation.

Original languageEnglish (US)
Pages (from-to)667-673
Number of pages7
JournalAmerican journal of respiratory cell and molecular biology
Issue number6
StatePublished - Jun 1992

ASJC Scopus subject areas

  • Molecular Biology
  • Pulmonary and Respiratory Medicine
  • Clinical Biochemistry
  • Cell Biology


Dive into the research topics of 'Mechanism of hydrogen peroxide-induced inhibition of sheep airway cilia.'. Together they form a unique fingerprint.

Cite this