Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region

Brian R. Noga, Dean J. Kriellaars, Robert M. Brownstone, Larry M. Jordan

Research output: Contribution to journalArticlepeer-review

81 Scopus citations


The synaptic pathways of mesencephalic locomotor region (MLR)-evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) recorded from lumbar motoneurons of unanesthetized decerebrate cats during fictive locomotion were analyzed prior to, during, and after cold block of the medial reticular formation (MedRF) or the low thoracic ventral funiculus (VF). As others have shown, electrical stimulation of the MLR typically evoked short-latency excitatory or mixed excitatory/inhibitory PSPs in flexor and extensor motoneurons. The bulbospinal conduction velocities averaged ∼88 m/ s (range: 62-145 m/s) and segmental latencies for EPSPs ranged from 1.2 to 10.9 ms. The histogram of segmental latencies showed three peaks, suggesting di-, tri-, and polysynaptic linkages. Segmental latencies for IPSPs suggested tri-synaptic or polysynaptic transmission. Most EPSPs (69/77) were significantly larger during the depolarized phase of the intracellular locomotor drive potential (LDP), and most IPSPs (35/46) were larger during the corresponding hyperpolarized phase. Bilateral cooling of the MedRF reversibly abolished locomotion of both hindlimbs as measured from the electroneurogram (ENG) activity of muscle nerves and simultaneously abolished or diminished the motoneuron PSPs and LDPs. Unilateral cooling of the VF blocked locomotion ipsilaterally and diminished it contralaterally with concomitant loss or decrease the motoneuron PSPs and LDPs. Relative to the side of motoneuron recording, cooling of the ipsilateral VF sometimes uncovered longer-latency EPSPs, whereas cooling of the contralateral VF abolished longer-latency EPSPs. It is concluded that MLR stimulation activates a pathway that relays in the MedRF and descends bilaterally in the VF to contact spinal interneurons that project to motoneurons. Local segmental pathways that activate or inhibit motoneurons during MLR-evoked fictive locomotion appear to be both ipsilateral and contralateral.

Original languageEnglish (US)
Pages (from-to)1464-1478
Number of pages15
JournalJournal of neurophysiology
Issue number3
StatePublished - Sep 1 2003

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology


Dive into the research topics of 'Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region'. Together they form a unique fingerprint.

Cite this