### Abstract

YBa2Cu3O6+x is known to undergo a transition from a magnetic semiconductor to a metallic high-temperature superconductor as the oxygen content is increased from the range 0.0x0.5 to 0.5x1.0. We report here detailed temperature- dependent magnetic-susceptibility studies for x in the composition range 0.0x1.0. For 0.05x0.5, the effective moment eff decreases with decreasing temperature from 300160 K, as expected for an antiferromagnet whose Néel temperature is above room temperature. Below 160 K, eff increases, reaching a maximum at 40 K then decreases again. The magnitude of this low-temperature peak in eff increases with x, reaches a maximum at x=0.35, then decreases toward zero. A Monte Carlo simulation method has been used to model the three-dimensional antiferromagnetic ordering of this system as a function of oxygen composition. The calculation reveals the presence of spin frustration as x increases from 0 to 0.3 in accord with the increasing number of effective moments at low temperatures. Above x=0.3 a new long-range order (corresponding to a doubling of the magnetic unit cell perpendicular to the planes) is predicted to occur in agreement with the observed magnetic susceptibility and recent neutron-diffraction experiments of Kadowaki et al. and Lynn et al. Above x=0.5, relatively few localized moments are observed in the temperature- dependent susceptibility measurement. In the metallic regime the Pauli susceptibility is observed to increase approximately linearly with oxygen content. This is in accord with decreasing effects of antiferromagnetic correlation with increasing x.

Original language | English (US) |
---|---|

Pages (from-to) | 6594-6599 |

Number of pages | 6 |

Journal | Physical Review B |

Volume | 39 |

Issue number | 10 |

DOIs | |

State | Published - Jan 1 1989 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics

### Cite this

*Physical Review B*,

*39*(10), 6594-6599. https://doi.org/10.1103/PhysRevB.39.6594

**Magnetic susceptibility of YBa2Cu3O6+x : Effects of spin frustration and correlation.** / Farneth, W. E.; McLean, R. S.; McCarron, E. M.; Zuo, Fulin; Lu, Y.; Patton, B. R.; Epstein, A. J.

Research output: Contribution to journal › Article

*Physical Review B*, vol. 39, no. 10, pp. 6594-6599. https://doi.org/10.1103/PhysRevB.39.6594

}

TY - JOUR

T1 - Magnetic susceptibility of YBa2Cu3O6+x

T2 - Effects of spin frustration and correlation

AU - Farneth, W. E.

AU - McLean, R. S.

AU - McCarron, E. M.

AU - Zuo, Fulin

AU - Lu, Y.

AU - Patton, B. R.

AU - Epstein, A. J.

PY - 1989/1/1

Y1 - 1989/1/1

N2 - YBa2Cu3O6+x is known to undergo a transition from a magnetic semiconductor to a metallic high-temperature superconductor as the oxygen content is increased from the range 0.0x0.5 to 0.5x1.0. We report here detailed temperature- dependent magnetic-susceptibility studies for x in the composition range 0.0x1.0. For 0.05x0.5, the effective moment eff decreases with decreasing temperature from 300160 K, as expected for an antiferromagnet whose Néel temperature is above room temperature. Below 160 K, eff increases, reaching a maximum at 40 K then decreases again. The magnitude of this low-temperature peak in eff increases with x, reaches a maximum at x=0.35, then decreases toward zero. A Monte Carlo simulation method has been used to model the three-dimensional antiferromagnetic ordering of this system as a function of oxygen composition. The calculation reveals the presence of spin frustration as x increases from 0 to 0.3 in accord with the increasing number of effective moments at low temperatures. Above x=0.3 a new long-range order (corresponding to a doubling of the magnetic unit cell perpendicular to the planes) is predicted to occur in agreement with the observed magnetic susceptibility and recent neutron-diffraction experiments of Kadowaki et al. and Lynn et al. Above x=0.5, relatively few localized moments are observed in the temperature- dependent susceptibility measurement. In the metallic regime the Pauli susceptibility is observed to increase approximately linearly with oxygen content. This is in accord with decreasing effects of antiferromagnetic correlation with increasing x.

AB - YBa2Cu3O6+x is known to undergo a transition from a magnetic semiconductor to a metallic high-temperature superconductor as the oxygen content is increased from the range 0.0x0.5 to 0.5x1.0. We report here detailed temperature- dependent magnetic-susceptibility studies for x in the composition range 0.0x1.0. For 0.05x0.5, the effective moment eff decreases with decreasing temperature from 300160 K, as expected for an antiferromagnet whose Néel temperature is above room temperature. Below 160 K, eff increases, reaching a maximum at 40 K then decreases again. The magnitude of this low-temperature peak in eff increases with x, reaches a maximum at x=0.35, then decreases toward zero. A Monte Carlo simulation method has been used to model the three-dimensional antiferromagnetic ordering of this system as a function of oxygen composition. The calculation reveals the presence of spin frustration as x increases from 0 to 0.3 in accord with the increasing number of effective moments at low temperatures. Above x=0.3 a new long-range order (corresponding to a doubling of the magnetic unit cell perpendicular to the planes) is predicted to occur in agreement with the observed magnetic susceptibility and recent neutron-diffraction experiments of Kadowaki et al. and Lynn et al. Above x=0.5, relatively few localized moments are observed in the temperature- dependent susceptibility measurement. In the metallic regime the Pauli susceptibility is observed to increase approximately linearly with oxygen content. This is in accord with decreasing effects of antiferromagnetic correlation with increasing x.

UR - http://www.scopus.com/inward/record.url?scp=0001162872&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001162872&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.39.6594

DO - 10.1103/PhysRevB.39.6594

M3 - Article

VL - 39

SP - 6594

EP - 6599

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 2469-9950

IS - 10

ER -