Magnetic susceptibility of YBa2Cu3O6+x: Effects of spin frustration and correlation

W. E. Farneth, R. S. McLean, E. M. McCarron, F. Zuo, Y. Lu, B. R. Patton, A. J. Epstein

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


YBa2Cu3O6+x is known to undergo a transition from a magnetic semiconductor to a metallic high-temperature superconductor as the oxygen content is increased from the range 0.0x0.5 to 0.5x1.0. We report here detailed temperature- dependent magnetic-susceptibility studies for x in the composition range 0.0x1.0. For 0.05x0.5, the effective moment eff decreases with decreasing temperature from 300160 K, as expected for an antiferromagnet whose Néel temperature is above room temperature. Below 160 K, eff increases, reaching a maximum at 40 K then decreases again. The magnitude of this low-temperature peak in eff increases with x, reaches a maximum at x=0.35, then decreases toward zero. A Monte Carlo simulation method has been used to model the three-dimensional antiferromagnetic ordering of this system as a function of oxygen composition. The calculation reveals the presence of spin frustration as x increases from 0 to 0.3 in accord with the increasing number of effective moments at low temperatures. Above x=0.3 a new long-range order (corresponding to a doubling of the magnetic unit cell perpendicular to the planes) is predicted to occur in agreement with the observed magnetic susceptibility and recent neutron-diffraction experiments of Kadowaki et al. and Lynn et al. Above x=0.5, relatively few localized moments are observed in the temperature- dependent susceptibility measurement. In the metallic regime the Pauli susceptibility is observed to increase approximately linearly with oxygen content. This is in accord with decreasing effects of antiferromagnetic correlation with increasing x.

Original languageEnglish (US)
Pages (from-to)6594-6599
Number of pages6
JournalPhysical Review B
Issue number10
StatePublished - 1989
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics


Dive into the research topics of 'Magnetic susceptibility of YBa2Cu3O6+x: Effects of spin frustration and correlation'. Together they form a unique fingerprint.

Cite this