Magnesium isotopic composition of the Earth and chondrites

Fang Zhen Teng, Wang Ye Li, Shan Ke, Bernard Marty, Nicolas Dauphas, Shichun Huang, Fu Yuan Wu, Ali Pourmand

Research output: Contribution to journalArticle

241 Citations (Scopus)

Abstract

To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ25Mg and ±0.07‰ on δ26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL).Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ25Mg = -0.13 ± 0.05 (2SD) and δ26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts (n = 110) and δ25Mg = -0.13 ± 0.03 (2SD) and δ26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths (n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ25Mg = -0.15 ± 0.04 (2SD) and δ26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes.Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ25Mg and -0.25 ± 0.07 for δ26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.

Original languageEnglish (US)
Pages (from-to)4150-4166
Number of pages17
JournalGeochimica et Cosmochimica Acta
Volume74
Issue number14
DOIs
StatePublished - Jul 2010

Fingerprint

chondrite
Magnesium
magnesium
isotopic composition
Earth (planet)
Chemical analysis
Isotopes
peridotite
isotope
basalt
mantle
enstatite chondrite
magmatic differentiation
ordinary chondrite
ocean island basalt
carbonaceous chondrite
constancy
Solar system
mid-ocean ridge basalt
Carbon Monoxide

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Magnesium isotopic composition of the Earth and chondrites. / Teng, Fang Zhen; Li, Wang Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu Yuan; Pourmand, Ali.

In: Geochimica et Cosmochimica Acta, Vol. 74, No. 14, 07.2010, p. 4150-4166.

Research output: Contribution to journalArticle

Teng, FZ, Li, WY, Ke, S, Marty, B, Dauphas, N, Huang, S, Wu, FY & Pourmand, A 2010, 'Magnesium isotopic composition of the Earth and chondrites', Geochimica et Cosmochimica Acta, vol. 74, no. 14, pp. 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang S et al. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta. 2010 Jul;74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
Teng, Fang Zhen ; Li, Wang Ye ; Ke, Shan ; Marty, Bernard ; Dauphas, Nicolas ; Huang, Shichun ; Wu, Fu Yuan ; Pourmand, Ali. / Magnesium isotopic composition of the Earth and chondrites. In: Geochimica et Cosmochimica Acta. 2010 ; Vol. 74, No. 14. pp. 4150-4166.
@article{cf12694e869545a88849a3193806e4ac,
title = "Magnesium isotopic composition of the Earth and chondrites",
abstract = "To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ25Mg and ±0.07‰ on δ26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL).Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ25Mg = -0.13 ± 0.05 (2SD) and δ26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts (n = 110) and δ25Mg = -0.13 ± 0.03 (2SD) and δ26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths (n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ25Mg = -0.15 ± 0.04 (2SD) and δ26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes.Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ25Mg and -0.25 ± 0.07 for δ26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.",
author = "Teng, {Fang Zhen} and Li, {Wang Ye} and Shan Ke and Bernard Marty and Nicolas Dauphas and Shichun Huang and Wu, {Fu Yuan} and Ali Pourmand",
year = "2010",
month = "7",
doi = "10.1016/j.gca.2010.04.019",
language = "English (US)",
volume = "74",
pages = "4150--4166",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "14",

}

TY - JOUR

T1 - Magnesium isotopic composition of the Earth and chondrites

AU - Teng, Fang Zhen

AU - Li, Wang Ye

AU - Ke, Shan

AU - Marty, Bernard

AU - Dauphas, Nicolas

AU - Huang, Shichun

AU - Wu, Fu Yuan

AU - Pourmand, Ali

PY - 2010/7

Y1 - 2010/7

N2 - To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ25Mg and ±0.07‰ on δ26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL).Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ25Mg = -0.13 ± 0.05 (2SD) and δ26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts (n = 110) and δ25Mg = -0.13 ± 0.03 (2SD) and δ26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths (n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ25Mg = -0.15 ± 0.04 (2SD) and δ26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes.Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ25Mg and -0.25 ± 0.07 for δ26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.

AB - To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ25Mg and ±0.07‰ on δ26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL).Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ25Mg = -0.13 ± 0.05 (2SD) and δ26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts (n = 110) and δ25Mg = -0.13 ± 0.03 (2SD) and δ26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths (n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ25Mg = -0.15 ± 0.04 (2SD) and δ26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes.Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ25Mg and -0.25 ± 0.07 for δ26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.

UR - http://www.scopus.com/inward/record.url?scp=77953686917&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77953686917&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2010.04.019

DO - 10.1016/j.gca.2010.04.019

M3 - Article

AN - SCOPUS:77953686917

VL - 74

SP - 4150

EP - 4166

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 14

ER -