Madden-Julian Oscillation

Chidong Zhang

Research output: Contribution to journalReview articlepeer-review

1469 Scopus citations


The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30-90 days) variability in the tropical atmosphere. It consists of large-scale coupled patterns in atmospheric circulation and deep convection, with coherent signals in many other variables, all propagating eastward slowly (∼5 m s-1) through the portion of the Indian and Pacific oceans where the sea surface is warm. It constantly interacts with the underlying ocean and influences many weather and climate systems. The past decade has witnessed an expeditious progress in the study of the MJO: Its large-scale and multiscale structures are better described, its scale interaction is recognized, its broad influences on tropical and extratropical weather and climate are increasingly appreciated, and its mechanisms for disturbing the ocean are further comprehended. Yet we are facing great difficulties in accurately simulating and predicting the MJO using sophisticated global weather forecast and climate models, and we are unable to explain such difficulties based on existing theories of the MJO. It is fair to say that the MJO remains an unmet challenge to our understanding of the tropical atmosphere and to our ability to simulate and predict its variability. This review, motivated by both the acceleration and gaps in our knowledge of the MJO, intends to synthesize what we currently know and what we do not know on selected topics: its observed basic characteristics, mechanisms, numerical modeling, air-sea interaction, and influences on the El Niño and Southern Oscillation.

Original languageEnglish (US)
Article numberRG2003
Pages (from-to)1-36
Number of pages36
JournalReviews of Geophysics
Issue number2
StatePublished - Jun 2005
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics


Dive into the research topics of 'Madden-Julian Oscillation'. Together they form a unique fingerprint.

Cite this