Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein

Kulandaivelu S. Vetrivel, Arghya Barman, Ying Chen, Phuong D. Nguyen, Steven L. Wagner, Rajeev Prabhakar, Gopal Thinakaran

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Several lines of evidence implicate lipid raft microdomains in Alzheimer disease-associated β-amyloid peptide (Aβ) production. Notably, targeting β-secretase (β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)) exclusively to lipid rafts by the addition of a glycosylphosphatidylinositol (GPI) anchor to its ectodomain has been reported to elevate Aβ secretion. Paradoxically, Aβ secretion is not reduced by the expression of non-raft resident S-palmitoylation-deficient BACE1 (BACE1-4C/A (C474A/C478A/C482A/C485A)). We addressed this apparent discrepancy in raft microdomain-associated BACE1 processing of APP in this study. As previously reported, we found that expression of BACE1-GPI elevated Aβ secretion as compared with wild-type BACE1 (WTBACE1) or BACE1-4C/A. However, this increase occurred without any difference in the levels of APP ectodomain released following BACE1 cleavage (soluble APPβ), arguing against an overall increase in BACE1 processing of APP per se. Further analysis revealed that WTBACE1 cleaves APP at β- and β′-sites, generating +1 and +11 β-C-terminal fragments and secreting intact as well as N-terminally truncated Aβ. In contrast, three different BACE1-GPI chimeras preferentially cleaved APP at the β-site, mainly generating +1 β-C-terminal fragment and secreting intact Aβ. As a consequence, cells expressing BACE1-GPI secreted relatively higher levels of intact Aβ without an increase in BACE1 processing of APP. Markedly reduced cleavage at β′-site exhibited by BACE1-GPI was cell type-independent and insensitive to subcellular localization of APP or the pathogenic KM/NL mutant. We conclude that the apparent elevation in Aβ secretion by BACE1-GPI is mainly attributed to preferential cleavage at the β-site and failure to detect +11 Aβ species secreted by cells expressing WTBACE1.

Original languageEnglish
Pages (from-to)26166-26177
Number of pages12
JournalJournal of Biological Chemistry
Volume286
Issue number29
DOIs
StatePublished - Jul 22 2011

Fingerprint

Glycosylphosphatidylinositols
Amyloid Precursor Protein Secretases
Amyloid beta-Protein Precursor
Amyloid
Processing
Lipoylation
Lipids
Cells
peptide A
Alzheimer Disease
Enzymes

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein. / Vetrivel, Kulandaivelu S.; Barman, Arghya; Chen, Ying; Nguyen, Phuong D.; Wagner, Steven L.; Prabhakar, Rajeev; Thinakaran, Gopal.

In: Journal of Biological Chemistry, Vol. 286, No. 29, 22.07.2011, p. 26166-26177.

Research output: Contribution to journalArticle

Vetrivel, Kulandaivelu S. ; Barman, Arghya ; Chen, Ying ; Nguyen, Phuong D. ; Wagner, Steven L. ; Prabhakar, Rajeev ; Thinakaran, Gopal. / Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein. In: Journal of Biological Chemistry. 2011 ; Vol. 286, No. 29. pp. 26166-26177.
@article{b108290812704bc390dd031b5f81004e,
title = "Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein",
abstract = "Several lines of evidence implicate lipid raft microdomains in Alzheimer disease-associated β-amyloid peptide (Aβ) production. Notably, targeting β-secretase (β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)) exclusively to lipid rafts by the addition of a glycosylphosphatidylinositol (GPI) anchor to its ectodomain has been reported to elevate Aβ secretion. Paradoxically, Aβ secretion is not reduced by the expression of non-raft resident S-palmitoylation-deficient BACE1 (BACE1-4C/A (C474A/C478A/C482A/C485A)). We addressed this apparent discrepancy in raft microdomain-associated BACE1 processing of APP in this study. As previously reported, we found that expression of BACE1-GPI elevated Aβ secretion as compared with wild-type BACE1 (WTBACE1) or BACE1-4C/A. However, this increase occurred without any difference in the levels of APP ectodomain released following BACE1 cleavage (soluble APPβ), arguing against an overall increase in BACE1 processing of APP per se. Further analysis revealed that WTBACE1 cleaves APP at β- and β′-sites, generating +1 and +11 β-C-terminal fragments and secreting intact as well as N-terminally truncated Aβ. In contrast, three different BACE1-GPI chimeras preferentially cleaved APP at the β-site, mainly generating +1 β-C-terminal fragment and secreting intact Aβ. As a consequence, cells expressing BACE1-GPI secreted relatively higher levels of intact Aβ without an increase in BACE1 processing of APP. Markedly reduced cleavage at β′-site exhibited by BACE1-GPI was cell type-independent and insensitive to subcellular localization of APP or the pathogenic KM/NL mutant. We conclude that the apparent elevation in Aβ secretion by BACE1-GPI is mainly attributed to preferential cleavage at the β-site and failure to detect +11 Aβ species secreted by cells expressing WTBACE1.",
author = "Vetrivel, {Kulandaivelu S.} and Arghya Barman and Ying Chen and Nguyen, {Phuong D.} and Wagner, {Steven L.} and Rajeev Prabhakar and Gopal Thinakaran",
year = "2011",
month = "7",
day = "22",
doi = "10.1074/jbc.M111.260471",
language = "English",
volume = "286",
pages = "26166--26177",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "29",

}

TY - JOUR

T1 - Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein

AU - Vetrivel, Kulandaivelu S.

AU - Barman, Arghya

AU - Chen, Ying

AU - Nguyen, Phuong D.

AU - Wagner, Steven L.

AU - Prabhakar, Rajeev

AU - Thinakaran, Gopal

PY - 2011/7/22

Y1 - 2011/7/22

N2 - Several lines of evidence implicate lipid raft microdomains in Alzheimer disease-associated β-amyloid peptide (Aβ) production. Notably, targeting β-secretase (β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)) exclusively to lipid rafts by the addition of a glycosylphosphatidylinositol (GPI) anchor to its ectodomain has been reported to elevate Aβ secretion. Paradoxically, Aβ secretion is not reduced by the expression of non-raft resident S-palmitoylation-deficient BACE1 (BACE1-4C/A (C474A/C478A/C482A/C485A)). We addressed this apparent discrepancy in raft microdomain-associated BACE1 processing of APP in this study. As previously reported, we found that expression of BACE1-GPI elevated Aβ secretion as compared with wild-type BACE1 (WTBACE1) or BACE1-4C/A. However, this increase occurred without any difference in the levels of APP ectodomain released following BACE1 cleavage (soluble APPβ), arguing against an overall increase in BACE1 processing of APP per se. Further analysis revealed that WTBACE1 cleaves APP at β- and β′-sites, generating +1 and +11 β-C-terminal fragments and secreting intact as well as N-terminally truncated Aβ. In contrast, three different BACE1-GPI chimeras preferentially cleaved APP at the β-site, mainly generating +1 β-C-terminal fragment and secreting intact Aβ. As a consequence, cells expressing BACE1-GPI secreted relatively higher levels of intact Aβ without an increase in BACE1 processing of APP. Markedly reduced cleavage at β′-site exhibited by BACE1-GPI was cell type-independent and insensitive to subcellular localization of APP or the pathogenic KM/NL mutant. We conclude that the apparent elevation in Aβ secretion by BACE1-GPI is mainly attributed to preferential cleavage at the β-site and failure to detect +11 Aβ species secreted by cells expressing WTBACE1.

AB - Several lines of evidence implicate lipid raft microdomains in Alzheimer disease-associated β-amyloid peptide (Aβ) production. Notably, targeting β-secretase (β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)) exclusively to lipid rafts by the addition of a glycosylphosphatidylinositol (GPI) anchor to its ectodomain has been reported to elevate Aβ secretion. Paradoxically, Aβ secretion is not reduced by the expression of non-raft resident S-palmitoylation-deficient BACE1 (BACE1-4C/A (C474A/C478A/C482A/C485A)). We addressed this apparent discrepancy in raft microdomain-associated BACE1 processing of APP in this study. As previously reported, we found that expression of BACE1-GPI elevated Aβ secretion as compared with wild-type BACE1 (WTBACE1) or BACE1-4C/A. However, this increase occurred without any difference in the levels of APP ectodomain released following BACE1 cleavage (soluble APPβ), arguing against an overall increase in BACE1 processing of APP per se. Further analysis revealed that WTBACE1 cleaves APP at β- and β′-sites, generating +1 and +11 β-C-terminal fragments and secreting intact as well as N-terminally truncated Aβ. In contrast, three different BACE1-GPI chimeras preferentially cleaved APP at the β-site, mainly generating +1 β-C-terminal fragment and secreting intact Aβ. As a consequence, cells expressing BACE1-GPI secreted relatively higher levels of intact Aβ without an increase in BACE1 processing of APP. Markedly reduced cleavage at β′-site exhibited by BACE1-GPI was cell type-independent and insensitive to subcellular localization of APP or the pathogenic KM/NL mutant. We conclude that the apparent elevation in Aβ secretion by BACE1-GPI is mainly attributed to preferential cleavage at the β-site and failure to detect +11 Aβ species secreted by cells expressing WTBACE1.

UR - http://www.scopus.com/inward/record.url?scp=79960421223&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79960421223&partnerID=8YFLogxK

U2 - 10.1074/jbc.M111.260471

DO - 10.1074/jbc.M111.260471

M3 - Article

C2 - 21642424

AN - SCOPUS:79960421223

VL - 286

SP - 26166

EP - 26177

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 29

ER -