Long-term moored array measurements of currents and hydrography over Georges Bank: 1994-1999

K. H. Brink, R. C. Beardsley, R. Limeburner, J. D. Irish, M. Caruso

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In conjunction with the GLOBEC (Global Ocean Ecosystems Dynamics) program, measurements of moored currents, temperature and salinity were made during 1994-1999 at locations in 76 m of water along the southern ank of Georges Bank and at the Northeastern Peak. The measurements concentrate on the biologically crucial winter and spring periods, and coverage during the fall is usually poorer. Current time series were completely dominated by the semidiurnal M2 tidal component, while other tidal species (including the diurnal K1 component) were also important. There was a substantial wind-driven component of the ow, which was linked, especially during the summer, to regional-scale response patterns. The current response at the Northeast Peak was especially strong in the 3-4 days per-iod band, and this response is shown to be related to an amplifying topographic wave propagating east-ward along the northern ank. Monthly mean ows on the southern ank are southwestward throughout the year, but strongest in the summertime. The observed tendency for summertime maximum along-bank ow to occur at depth is rationalized in terms of density gradients associated with a near-surface freshwater tongue wrapping around the Bank. Temperature and salinity time series demonstrate the presence, altogether about 25% of the time, of a number of intruding water masses. These intrusions could last anywhere from a couple days up to about a month. The sources of these intrusions can be broadly classied as the Scotian Shelf (especially during the winter), the Western Gulf of Maine (especially during the summer), and the deeper ocean south of Georges Bank (throughout the year). On longer time scales, the temperature variability is dominated by seasonal temperature changes. During the spring and summer, these changes are balanced by local heating or cooling, but wintertime cooling involves advective lateral transports as well. Salinity variations have weak, if any, seasonal variability, but are dominated by interannual changes that are related to regional- or basin-scale changes. All considered, Georges Bank temperature and salinity characteristics are found to be highly dependent on the surrounding waters, but many questions remain, especially in terms of whether intrusive events leave a sustained impact on Bank waters.

Original languageEnglish (US)
Pages (from-to)191-223
Number of pages33
JournalProgress in Oceanography
Issue number3
StatePublished - Sep 2009

ASJC Scopus subject areas

  • Aquatic Science
  • Geology


Dive into the research topics of 'Long-term moored array measurements of currents and hydrography over Georges Bank: 1994-1999'. Together they form a unique fingerprint.

Cite this