Lode dependences for isotropic pressure-sensitive elastoplastic materials

Research output: Contribution to journalArticlepeer-review

141 Scopus citations


Experimental investigations indicate that the third stress invariant; Lode angle a affects significantly the behavior of pressure sensitive materials. The present communication presents a formulation to account for α in isotropic pressure-sensitive elastoplastic materials. Seven Lode dependences are reviewed. A new one, referred to as LMN, in proposed to generalize Lade and Duncan, and Matsuoka and Nakai failure surfaces. The formulation is general enough to introduce α into the isotropic elastoplastic modes which are only developed in terms of first and second-stress invariants. As an illustration, several Lode dependences are introduced into Roscoe and Burland model. The performance of the modified model is estimated by comparing experimental and analytical results in the case of true triaxial loadings on normally consolidated clay.

Original languageEnglish (US)
Number of pages1
JournalJournal of Applied Mechanics, Transactions ASME
Issue number3
StatePublished - Sep 1990
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Lode dependences for isotropic pressure-sensitive elastoplastic materials'. Together they form a unique fingerprint.

Cite this