Liver immune cells release type 1 interferon due to DNA sensing and amplify liver injury from acetaminophen overdose

Alan Moreira de araujo, Maísa Mota Antunes, Matheus Silvério Mattos, Ariane Barros Diniz, Débora Moreira Alvarenga, Brenda Naemi Nakagaki, Érika de Carvalho, Viviane Aparecida Souza Lacerda, Raquel Carvalho-Gontijo, Jorge Goulart, Kassiana Mafra, Maria Alice Freitas-Lopes, Hortência Maciel de Castro Oliveira, Camila Miranda Dutra, Bruna Araújo David, Aristóbolo Mendes Silva, Valerie Quesniaux, Bernhard Ryffel, Sergio Costa Oliveira, Glen N. BarberDaniel Santos Mansur, Thiago Mattar Cunha, Rafael Machado Rezende, André Gustavo Oliveira, Gustavo Batista Menezes

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Hepatocytes may rupture after a drug overdose, and their intracellular contents act as damage-associated molecular patterns (DAMPs) that lead to additional leukocyte infiltration, amplifying the original injury. Necrosis-derivedDNAcan be recognized as aDAMP, activating liver non-parenchymal cells (NPCs). We hypothesized that NPCs react to DNA by releasing interferon (IFN)-1, which amplifies acetaminophen (APAP)-triggered liver necrosis. We orally overdosed different knockout mouse strains to investigate the pathways involved in DNA-mediated amplification of APAP-induced necrosis. Mice were imaged under intravital confocal microscopy to estimate injury progression, and hepatocytes and liver NPCs were differentially isolated for gene expression assays. Flow cytometry (FACS) using a fluorescent reporter mouse estimated the interferon-beta production by liver leukocytes under different injury conditions. We also treated mice with DNase to investigate the role of necrosis DNA signaling in IFN-1 production. Hepatocytes released a large amount of DNA after APAP overdose, which was not primarily sensed by these cells. However, liver NPCs promptly sensed such environmental disturbances and activated several DNA sensing pathways. Liver NPCs synthesized and released IFN-1, which was associated with concomitant hepatocyte necrosis. Ablation of IFN-1 recognition in interferon α/β receptor (IFNAR−/−) mice delayed APAP-mediated liver necrosis and dampened IFN-1 sensing pathways. We demonstrated a novel loop involving DNA recognition by hepatic NPCs and additional IFN-1 mediated hepatocyte death.

Original languageEnglish (US)
Article number88
JournalCells
Volume7
Issue number8
DOIs
StatePublished - Aug 2018

Keywords

  • DNA sensing
  • Hepatology
  • Immune system
  • Immunity
  • In vivo imaging

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Liver immune cells release type 1 interferon due to DNA sensing and amplify liver injury from acetaminophen overdose'. Together they form a unique fingerprint.

Cite this